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XII. Ellpsordal Harmonic Analysis.
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462 PROFESSOR G. H. DARWIN ON ELLIPSOIDAL HARMONIC ANALYSIS.

INTRODUCTTON,

Lami’s functions or ellipsoidal harmonies have been successfully used in many
investigations, but the form in which they have been presented has always been
such as to render numerical caleulation so diflicult as to be practically impossible.
The object of the present investigation is to remove this imperfection in the method.
I believe that I have now reduced these functions to such a form that numerical
results will be accessible, although by the nature of the case the arithmetic will
necessarily remain tedious.

Throughout my work on ellipsoidal harmonies I have enjoved the immense
advantage of frequent discussions with Mr. i W. Hossox. He has helped me
freely from his great store of knowledge, and beginning, as I did, in almost complete
ignorance of the subject, I could hardly have brought my attempt to a successful
issue without his advice. In many cases the help derived from him has been of
immense value, even where 1t is not possible to indicate a specific point as due to bi.
In other cases he has put me in the way of giving succinet proofs of propositions
which I had only proved by clumsy and tedious methods, or where 1 merely felt sure
of the truth of a vesult without rigorous proof. In particular, I should have been
quite unable to carry out the investigation of § 19, unless he had shown me how the
needed series were to be determined.

My original object in attacking this problem was the hope of being thereby enabled
to obtain exact numerical results with respect to M. Poincari’s pear-shaped figure
of equilibrium of a mass of liquid in rotation.*  But I soon found that a partial inves-
tigation with one particular point in view was impracticable, and 1 was thus led on
little Ly little to cover the whole field, in as far as it was necessary to do so for the
purpose of practical application. This paper has then grown to such considerablo
dimensions that it seemed best that 1t should stand by itself, and that the discussion
of the specific problem should be deferred.

A paper of this kind 1s hardly read even by the mathematician, unless he happens
to be working at a cognate subject. 1t appears therefore to be useful to present a
summary, which shall render it possible for the mathematical reader to understand the
nature of the method and results, without having to pick it out from a long and
complex train of analysis. Such a summary is given in Part T11L

PART L
Formamion o 1un FUNCTIONS.
§ L. The Principles of Lillipsoidal Harmonic Analysis.

The basis of this method of analysis is expounded in various works on the subject.
I begin with a statement of results in my own notation.

* A paper giving the required result will he preseuted to the Society in the anbumn,—{July 2, 1901.]
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PROFESSOR G. H. DARWIN ON ELLIPSOIDAL HARMONIC ANALYSIS. 463

If u®, uy?, ug® denote the three roots of the cubic

it may be proved that
o (@ 4 w?) (@ + w)?) (@ + w?)
- (0* — a®) (¢ — a?) ’

and 7°, 2° may be written down by cyclical changes.

If for brevity we write
A=)+ a* B =u?+ 0,07 =u’+ & (=12 3),
Larracw’s equation becomes

(”22 - 1{332) ("AI}BJAC ! > Vi + (’lt) — ) (A BCz : d_)gvl

s Qs it

2 g2 P Ny
+ (1 11,%) < A,B,C, 7’(,;%[]%3;) V.= 0.
e solution is vV, = U,U,U,,

where U, U, Uy are functions of u, u,, 1, respectively, and satisfy

T d \? .
! — [4s 9 g2
(ABC, U =6+ O+ €U,
SAas|

and two other equations with suffixes 2 and 3, involving the same «, a constant, and
the same 7, a positive integer. .

If @, b, ¢ are in ascending order of magnitude we may suppose u,* to lie between
— a”and oo, u,’ between — ¢ and — 0% and u,* between — 0? and —a?

If s, s, 53 denote the three orthogonal arcs formed by the intersections of the
three orthogonal quadrics,

( ds; >-‘3 (= ) (g — )

ud 2p.201 2
day APB2AC)

and two other equations found by cyclical changes of suffixes.

§ 2. Notation ; limits of B so as to represent all Ellipsoids.

I now change the notation, and let the three roots be defined thus :-—

o~
<
T
i
<3
<

where » ranges from o to 0, u between + 1, ¢ between 0 and 2.
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464 PROFESSOR G. H. DARWIN ON ELLIPSOIDAL HARMONIC ANALYSIS.

Let the axes of the fundamental ellipsoid of reference be

1
)
1 —p
D = — 12
c? 0

o = (;ﬂ T R =0 = 1), @ =, (0 < b <o),

This mode of defining the axis is such as to indicate the relationship to the
prolate ellipsoid @ = b < ¢. But another hypothesis may be made which will bring
the axes into relationship with those of the oblate ellipsoid ¢ = b > ¢; for if we
take a new £, numerically equal to the old one but imaginary, and replace »* by —¢,
we have

@ =R(0+ 1?2) B = (L + 1), & = L, (a> b> o).

If B be made to range from 0 to oo, all possible ellipsoids are comprised in either
of these types. It will, however, now be shown that, by a proper choice of type, all
ellipsoids may be included with the range of 8 from 0 to 4.

Let us suppose the axes to be expressed in three forms, as follows —

(1) - (2) (3)
of 1+ :
o? = ]c‘<v2 - I B) = k(7 = ky*v,?,
' 1
p=re-) =R+ =k )
1
2 = I2° = k2 <§12 + ,__"l:'[?)).) = I (v, — 1).
1T -5 :
Then we have
228 L+ R
N S A - 9t T P
b o L g Iy k, 1= B,
208 228,
=0 = = T = T
[ /81 L - /82
Y P—er 28 _ LB L+ B
Therefore S T g T up T T ag
¢ — 1+8 1+p8 1 -8,
e T 1R 28, 28,
_P-d _ =B 1+B
And 20 — a® — 0F B=1 31— 38
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Now let 8 increase from 0 to oo,

As B passes from 0 to &, form (1) is appropriate.

As B passes from 3 to 1, B, decreases from § to 0, so that form (2) is appropriate.

Lastly, as B passes from 1 to o, 8, increases from 0 to 4, so that form (3) is
appropriate.

But we might equally well have written forms (1) and (3) so as to involve ¢, and
form (2) so as to involve », and it follows that all possible ellipsoids are comprised in
the range of 8 from 0 to }, provided that the type be appropriately chosen.

The developments in this paper are made in powers of 8. Tt will, therefore, be
well to show that there is a class of ellipsoids, analogous to ellipsoids of revolution,
which might form the basis of developments similar to those carried out below.

Ellipsoids of revolution are defined by the condition

2

@t — =0 = or o = 2

In the class to which T refer

@ — =t = DY or =L (a4 1)
Ellipsoids of this kind are given by B = 8,= — 8, = 1; for in this case
D* = §(a* + ¢*). They are also given hy :

B =, =B =B, =1; for then ¢ = §(a® + 1?).

Hence if' we only allow B to range from 0 to 1, 8 = 0 corresponds with ellipsoids
of revolution, to which spheroidal harmonic analysis is applicable; and B8 = L
corresponds with this new class for which the corresponding analysis has not yet
been worked out.

We shall see below that the solid harmonic for this case where 8 = L will be of
the form B (v) B (x) E (¢), where B and E satisfy the equations

. an mo . .
P D=1 4 287 — i+ )B4+ B =0,
dv? dv
an . AD) . o
Ccos 24 gge SN 26 74 4+ i(t 4+ 1)E cos 2¢ — $*E = 0.

I am not clear whether or not it would be advisable to proceed ab initio from these
equations, but at any rate I shall show hereafter how the B- and E-functions may be
determined from the analysis of the present paper with any degree of accuracy
desirable.

If' it were proposed to use the functions corresponding to 8 = % as a basis for the
development of general ellipsoidal harmonics, we should have to assume

VOL. OXCVIT.-—-A, 30
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466 PROFESSOR G. H. DARWIN ON ELLIPSOIDAL HARMONIC ANALYSIS.

9
af = KW, 0P = k* (" — 1), ¢* = kz<v _— ﬁ“) :
— 7

or clse o= B = (1), ¢ = (e T

/

The developments would then proceed by powers of 7.

In order to discover what is the greatest value of % which must be used so as to
comprise all ellipsoids, when we proceed from both bases of development, a com-
parison must be made between this assumption and the previous one. Suppose in
fact that

\

g) =W = B — 1) = K2({* + 1);

2 — ](52 2 e ’(" (€'2 _ . ")'ﬁ>

D'

c? T
o 9/%8 . T
Th Vg = P R B R 2 N
en b a =g E*; ¢ ) T
2B 1 - 38
and therefore e e O ——
1= T 147 1 + B

When n and B are both equally great, they must each equal the positive root of

_l"f’ﬂ_
B B'

This root is /5 — 2 or '236. Thus the greatest values will be

1 1
B=m= 5 5= 1o

In this case »* = % = % very nearly, whereas when 8 =4, 8°= 4. Thus if the
developments were to stop with 8° we should double the accuracy of the result.
However, T do not at present propose to carry out the process suggested.

§ 3. The Differential Equations.

. cos 2
We now put u,* = k%2 1, = k%, u,? = jol — B —1)

18
o1+ 8 ; ‘
9 _ pat TP 9 — 2 2 — Q-
T k g b = £, ¢ 0;
and find from the formule of §1,

Yo L =B e LABN e LBy ey )
P 148 1_3><'“ "‘1».3)"0393 {
7 B 1Y e
5= (¥* — 1) (p* — 1)sin® ¢, ;o (1).
2 el —ﬁf,?ff 2
BEUE T8 J
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It will be observed that » is independent of 3, and that it has the same form as in
spberoidal harmonic analysis when 8 vanishes.  Since p® is less than 1 and »* greater
than Li—@, @ and y are real.

1-8 . v

In all the earlier portion of this paper I always write p* — [ and not 1 — p? so
as to maintain perfect symmetry with respect to » and p.

We now have

4

g
(\\\—"‘ : / > l - > ) ) ) 9
T AP =F kv” — i B) B = *@* — 1), G2 = 1%,
<

>~ ’ 1+ B ) s :
5 : Al =F <M2 — 1TE>’ B =@ —-1), C}=iu;
e ’ :
LuG Azz_‘:w Br)z:?@?ﬁﬁ@i‘f? 0.2 — 21“/80032‘1’.
T O 5 11— 7 5 11— 8 1—p
=w
o Let us denote the differential operators involved in our equations, thus :—

4
)
=0
=0 i ABG _ JABC, d
8;) 5 D (1 '8 ) lewy du (1 -8 ) feasy du
o Dy = — /1. (1 — gy BCs @
§§ 8 ) kug  dug”
o=

. , L/ 1+ 8 L d
Then D, = (1 — BH A‘mw> (- )2&;

Dz-<1-8)( 1«:"—1;)( '»-1)%@ @)

Dy = (1 — Bcos ZqS)*dTﬁ

J
B 4 kD v a kD,
ABC, wdu, (1 — B)Y’ ;B ol = (1 =By
W kD,

< ABCM =V Gy
2 : Hence our differential equations are
> 1 :
olm __U = [z (t + 1)v* + E-:l U, a similar equation with suffix 2, and
= 23 1 B Y

)
50 @) —DsU, ,8@0% - B eos 2¢
0 I

»

Let us replace «* by another constant such that

LO

(ii(i + 1) 4 ) (=B =i(+ N[~ B) — 1]+ = fo,

x

so that i@k 1) =8 Be
| - 1 -2

I

W
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468 PROFESSOR G. H. DARWIN ON ELLIPSOIDAL HARMONIC ANALYSIS.

In this formula s 1s a constant integer and o a constant to be determined.
Our eguations are now

DE = i+ D (= B) = 1] = + Bor| U} = 0.7
a similar equation for p [ .o ()
and (D2 — (74 1)Beos2dp + s> — Bo| U, = 0 J

And Larvraces equation 18

Fan 1 — Beos 2\ + , /1 — Beos? N ) 5 R ) S
[(\ = @_,_g,ﬁ Ju + Q—»-ﬁﬁ_ﬁg»?’»’ — 2D — (o — 1) .1.);;} U,U,U, = 0,
L ()

Larrace’s operator V? is equal to the differential operator in (4), divided by

IR0 — ) <Vg _ 1= Bcos 2¢>> <], — Beos2¢p Hz\)_

-3 1—-8 ,

It is well known that in spheroidal harmonic analysis there arve two kinds of
functions of v and p which satisfy the differential equation, and they are usually
denoted P/, Q. The Q-functions of the variable p have no significance, so that
virtually there are P- and Q-functions of », but ouly P-functions of w. The like is
true in the present case, however, with the additional complication that each of the
functions may assume one of two alternative forms. I adopt a parallel notation and
write for U, and U, either 3, @/, or P/, Q/, as the case may be.  Since v and p
enter in the first two equations in exactly the same way, we need only consider one
of them, and we may usually write simply (for example) 33, where the full notation
would be 39/ (v or n). In the early part of the investigation I shall only refer to the
P-functions, and the Q-functions will be considered later.

Tn spheroidal harmonic analysis the third function is a cosine or sine of s¢. So
here also we find functions of two kinds associated with cosines and sines, which 1
shall denote &, &/, G/, 8/, the variable ¢ being understood.

Throughout the greater part of this paper the functions will be of degree denoted
by ¢, and it seems useless to print the subscript « hundreds of times. I shall accord-
ingly drop the subseript ¢ except where it shall be necessary or advisable to retain it ;
for example, 33* will be the abridged notation for 9, (»).

The operators involved in the differential equations (3) will oceur so frequently
that an abridged notation seems justifiable. I therefore write

Y= D2 =i+ 1) (L —B) — 1] — & + Bo,
xs = D* —1(z 4 1) Beos 2¢ + §* — Bo,

where D =01~ ,3)%(,,9 —_ }{—ég)g(w — 1)-&(%3 o (B).
Dy = (1 — Beos ng)lr;:?)
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PROFESSOR G. H. DARWIN ON ELLIPSOIDAL HARMONIC ANALYSIR. 469

The equations are then
U, (3 or P) = 0, }
Y (€ or & or G or 8) = 0

§ 4. The Forms of the Functions.

Tt is well known that the function Uj; is a linear function of u, of degree « made up
in one of the eight following ways :—-

1. When ¢ is even, a linear function of u,* of degree 4u.

2, 3, 4. When 7 is odd, a linear function of %* of degree (i — 1), multiplied by
A, or B, or C,.

5, 6, 7. When ¢ is even, a linear function of u* of degree (¢ — 2), multiplied by
B,C, or C A, or A/B,.

8. When 4 is odd, a linear function of u® of degree %(/~— 3), multiplied by

ABC,

These eight classes may be conveniently specified by the initials O, A, B, C, BC,
CA, AB, ABC, but it is better to rearrange them according as they are associated
with the evenness or oddness of 7 and s, and with the cosine or sine functions. This
new grouping may be defined by a shorthand notation involving the iitials E, O
and C or S, which shall denote successively the evenness or oddness of ¢+ and s, and
cosine or sine.

We shall see below that this arrangement is as follows :—

O or EEC ; 7 even, s even, cosine.
AB or EES ; 7 even, s even, sine.
A or OOC; 72 odd, s odd, cosine.
Bor O0S; 7 odd, s odd, sine.
(! or OEC: 7 odd, s even, cosine.
ABC or OES ; 7 odd, s even, sine.
CA or EOC; 7 even, s odd, cosine.

(B or KOS ; ¢ even, s odd, sine.

Since the several functions are linear in u,% they are in the new notation functions
of ¥ or p% or of v* — 1 and p? — 1.

Hence 39°(v) and P*(v) involve linear functions of »* — 1 of various degrees
multiplied by various factors ; and the same is true of the functions of p.

In the case of the third root the linear function of powers of cos2¢ may be
replaced by a series of cosines of even multiples of ¢. Further, in forming the @, &,
C, S functions we may regard A, as being cos ¢, By as sin ¢, and C; as (1 — Bcos 2¢),
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470 PROFESSOR G. H. DARWIN ON ELLIPSOIDAL HARMONIC ANALYSIS.

since this only amounts to dropping constant factors which may be deemed to be
included In the, as yet, undetermined coeflicients of the several series.

I will now consider in detail the forms of the several P-functions of » (those for p
following by symmetry), and at the same time indicate more precisely the nature of
the notation adopted.

In the following series, indicated by 2, the variable ¢ is supposed to proceed from the
lower to the upper limit by 2 at a time. The reader will be able to perceive the
manner of the formation of the functions when he bears in mind that

Al = 76(1/2 — LiB), iBl == /J(VQ' — 1)5“, '}1 = ku.

L =8,
Type O or EEC: 39 = Say (5 — )",
e T X i o N ]'+B'J£
Lype ABor EES; P = So, (07 — 1)¥70(»* — T8)

rl‘ypeBOI’ OOS’ E‘ES — Ea[(yzm [)§,
Type C or OEC; B = ﬁ:%y (0¥ — 1),
1

Type ABC or OFS ; P = Saw (5 — 1)1¢-2(32 {ig) .
3 \ B =

Type CA or EOC; P* = jzocm (v — 1)¥e-2 <vB - 1%%)

Type CB or BOS; 1" = S (s — 1)1,
2

Observe that P is always associated with ( ¥ — }ig ), and that, each form being
\ TRy

repeated twice, there are two forms of function of each kind. Moreover, a cosine
and a sine function are always associated with different kinds. 1t is obvious that the

{3-functions are expressible in terms of the ordinary P-functions of spherical
[ o LEB\G
harmonic analysis, and that if we take out the factor (Vo ’5> the P-functions are

ot =1

similarly expressible. This factor will occur so frequently that 1 write

o 1+ B\%
a0 = (22 H),

\ -1

and as elsewhere commonly put Q to denote ().
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We assume then the-following forms for the functions :—

For EEC, OEC, 008, EOS
Po= P+ 3B, P A B, P
For EES, OES, 00C, EOC

P = Q{¢ P+ 28, ., P % + 2B ., PP} J

In these series n proceeds by intervals of one at a time, beginning from a lower
limit of unity. In both forms the upper limit of the first = is 4s or % (s—1) according
as s is even or odd ; and the upper limit of the second S is % (2 —s) or +(1 — s — 1)
according as 7 and s agree or do not agree in evenness or in oddness.

The factor Q contains (»* — 1) in the denominator, but P°* does not become
infinite when » = =+ 1, because when s is not zero P’ is divisible by (»* — 1)* and
we shall see that ¢ is zero.* When s is zero there i1s no function of the P type.

It may be noted that the limits of the series are such that neither ¢ nor ¢’ can ever
have a negative suflix.

We shall ultimately make ¢, and ¢', equal to unity, and this will be justifiable
because there must be one arbitrary constant.

We have now to consider the forms of the cosine and sine functions. They may

be derived at once from the preceding results, for we have only to read (»* — 1)¥
p > y

as cos td where t is even; (»* — 1) as sing, (v? — —+'8) as cos ¢, and v as

=8,
(1 — Bcos 2¢).

The factor (1 — Bcos 2¢) will occur frequently, and I write

®(p) = (1 — Beos2¢),

and as elsewhere 1 commonly write ® to denote ® ().
The following are the results :—

'L

Type O or EEC ; & = Sy, costp.

0 .
Type ABor EES; & = g—yi sin i .

2

1t is clear that we may equally well regard the lower limit in the latter as zero.

Type A, or OOC; each term is of type cos (¢t — 1) ¢ cos ¢or cos (t — 2) ¢ -+ cost .
Hence ¢ = é-y/ cos te.
1

* This also follows from the fact that the series for P* begins with Qa, (v* — 1) in the case of EES,
and with Qagv (2 — 1) in the case of OES. Thus in the former case there is no term Qay and in the
latter no term Qaqv
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Type B, or OOS ; since we now have cos (1 — 1) ¢ sin ¢,
S = iy/ sin o
1
Type €. or ORC; C = @Iy cos(r — 1) .
1

- Type ABC, or OES ; each term is of type @& cos (£ — 1) ¢ sin ¢ cos ¢, which gives
[sin (£ 1)¢p — sin (1 —3) . Hence

S = (1)537/ sin (t — 1)¢.

1t is clear that we may equally well regard the lower limit as unity-.
Type CA, or EOC ; each term is of type ® cos (f — 2) ¢ cos .  Hence

C' = ®Zy cos(t — 1)¢.
Type OB, or KOS ; each term is of type ® cos (1 — 2) psin¢g.  Hence

i
S = dXy sin (1 —1)¢.
When 7 and s agree as to evenness or oddness we have the forms independent of ®,
when they differ in this respect the factor ® occurs.
Therefore (in alternative form) for EEC, EES, OOC, OOS

{(g = ps{eos s -+ SB”_px_g,,{mS (8 — 2n) 4+ ZB'p, ., 2;,{0% (s 4+ 20) ¢

sin sin sin

and for OEC, OES, EOC, EOS (7).
C , cos . Cos . < [cos ,
{S"’ = [p,&{&‘in s+ 2B ")"{siu (s = 20)¢ + 3B 'PlHZnisin (s+2m) (/)} h

In these series 7 proceeds by intervals of one at a time, beginning with unity. In
both forms the upper limit of the first $is s or § (s — 1) according as s is even or odd.
In the first form the upper limit of the second X is | (v — s), and in the second form
s & (¢ —s—1)

We shall ultimately put p, and p/,, which may be regarded as arbitrary constants,
equal to unity.

§ 5. Preparation for determination of the Funeciions.

In order to determine the coeflicients ¢, ¢/, p. p" and o, we have to substitute these
assumed forms in the differential equations.

Where the functions involve O and @ as factors, the forms already given for the
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differential equations are perhaps the most convenient, but in the other cases a
reduction seems desirable.
By considering the forms of D and D, in (3) it is easy to show that

b = [(,, —1) ZV] S ) = 1) — &
— ,e[(yﬂ DO D) W =i 1) - 0'] L (8),

o* o? . IZ C ‘
= 8 S 2d T — gin 2 4 s 2 - )
Xe = g Fos B [eos ¢»d¢z sin (/}(hp + (0 4 1) cos 2¢ + o-] coe (9).

By makin vanish we reduce these operators to the forms appropriate to
Y g
spheroidal harmonic analysis. By making B infinite we obtain the differential
equations specified in § 2 as appropriate to ellipsoids of the class ¢* = &(a® + 0?).

Tt is now necessary to perform the operation s, on typical terms P’ and Q P/, and

. cos CoS
/. on typical terms < . tdh and P2 LT b,
X» on typies {sm ¢ sin 1P

(a.) To find ¢, (P7).
The form (8) for ¢, is here convenient.
It is clear that

H}Iﬂ =1 (;1]3” @+ 1) 1) = Sn‘} Pl= (2 — )P,

because P’ is the solution of the differential equation found by erasing the term
— s*P’ from each side.
Again we have from the same differential equation

(" — 1).‘? Pl o= — QVL{B +i( + 1)})1 + o P
dvt” dy T ¥ — 1"

It may be noted in passing that this is equally true when the subject of operation
is Qf, the function of the other form.
Therefore

[0 =004 0+ 2 =G 1) = |
—_—[- HV~+Z a,-|-1)+t°” *{ 0'-}1’/.

Hence

B (P) == (82 — ) D/ — B{m i 1) 4 e - 0'} P,

VOL. CXCVIL.-—A. 3 v
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dP! v + 1
We have now to eliminate v — and ———— P
dv -1
It is known that P=_" (Y= y
t 1s known tha = 21..%,}(\;,; (v — 1),
/. 1 d i
and CP= ) (dy) P,

The differential equation satisfied by P involves ¢ in the form #.  Hence

da\"? .
(v - 1)‘5”((71}) P can only differ from P’ by a constant factor. In order to find
that factor suppose » to be infinitely large ;

2 |
h = 2y
then P 5 (i 1) v,
%1 v
b
and Pr=oiri
L\~ 2! 7! . 22! vt
LA 1~—§.—t L — i PR RE R, . J— .
Also 0 —1) <dv> GG i k1T T2 g g
b - 1!
Therefore the factor 1s '-—_7 and

v+ ! f’d)“"“P

=0 = (g =i e -0 (g

It will be convenient to pause here and obtain the corresponding formule for the
Q-functions. Various writers have adopted various conventions as to the factors
mmvolved in these functions. I write

- dy
Q=P| 0 — 1)(P)
and Q = (v* — 1)¥ <%>ZQ

As in the case of P/ we may change the sign of ¢, if we introduce a constant
factor, and this may be found by making » infinitely great. Tn that case it is easy to
show that

2l L

A T ZAY 5%
By pertorming ( ;;—~) and (»%\/ on Q it follows that the constant factor is the same
7 \dy \

vy
\ /
as before, and that the alternative forms for () are exactly the same as for P

Hence the transformations which follow for the P-functions are equally applicable
to the Q-functions.
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If we differentiate P/ in its two forms we find

dPpt fd\? ANAS! P+l
— = 2 -2/ 2 f 2 __ 1t ___> .t y o B
= tv (v 1) \du) P+ (v 1) <dvl P = P —|—(V2 oy
art i+ t! Y A 5 e — (-1
And = _i—t!{—tv(’) 1)~ d) P4+ (»—1) | dv) P
tv T+t T —t+ 11 Pl
—_— e~ i Y .
- zﬂ—-—]vP+@'~—tIi+t_11(v2_1)¢'

I now write
St =@+ 00—t +1)=d@+1)—t(t — 1)
It is clear that
{6, =t} = {, t + 1}, and {4, 0} = {1, 1} = i(s + 1).

. r4tte—¢ 41!
Now since - .
1 —¢l e+t —1"!

= {2, t}, by taking the sum and difference of the two

l)t
forms of ——, we have

d 3
are 1 rp =1
dv — 2(0° — 1) [P Tt U t} P I
vl)t {'L t} (].O).
- = L] — tprtr g B Y prea
gy = b= e e
It is easy to verify, by means of the relationship P~ ’—- e P’ that these

equations are true when ¢ is negative. They are also true when t = O, although the
second equation then becomes nugatory.

Multiply the first of (10) by » and the second by o and apply them a second

1)*-*’
time.
Then since {@.’tt ++11} - t{i’_ta = — 2%%}11 ),
{;(z:f :—r ]1)} + f({t%"—'t}]) =2 (Z%Z}i - > ’
:ii = yzi1— L
21/';1;’ _ %[_ rI:] _ ctgz + l)Pf 4 & t}t{z_tl L pr- o] l .
v : Pl _ %‘[5(}2‘0’1—) _ z@tgrbjll) prog L tt}(;fbj = 1 pie ] [ <o (L),

These equations arc always true although for ¢= 4 1 and 0 they become
nugatory.
3P 2
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Then
AP 1 B B
- 2 dy + 21 Pl %2 [P A {Z: t} {”/: ¢ l}-[)‘ 2_‘ v (Z i 1) P

Hence

b

b (1) = — 18 F(f"’ﬁ‘ O prp Pt 9P 1 — t1,}'P/~9]. (12)

(B.) Lo find g, (Q ).

It 1s now best to use y in the form (5), where D, is defined hy (2).

o i, D 2
| 2Pt

B

and  DP(QP) = (»* — 1) 0 {H”O — (1 = B) - 28] dv*

BN A e 4

Ay V-1 =1

The latter terms of y contribute

Q{—=1(0 4+ ) — 1)1 - B) — B P — (s* — Bo) P'}.
Therefore

Y (2P) = 0 {(1/3 — D[ = 1) (1 = B) — 28] &2

dv?
0= 1) (1= B) + Bl =i+ 1) (L= B (F — 1) P
— P4 Bii 4 1) P 4 Bol — 28 ”3»*3} .

¥ — 1
¢ (1t . TE \ )
But (* — 1) (;-7;; = w Jp ";77 (s )P S P and we find on reduction that
T ly 1
. " o APt o | v 41 ; .
) e P (£ ) o SERERR L ) 2 1 VP P
B (QP) = 0P (12 — &) BQ[ o i )P T e 42 0—1}.
o . wdPt ] .
On substituting for b%lu and 3;1'» | P’ their values, we have
, C (s = 12 F4 2,0,
hiap) = - bea | (46 Vg L pre g
tee 2 Y Pr—1 | o
+ it — P *J. .o (1)

/ N
('y.) Toﬁml Xs ({Z?}i th )

In this case the most convenient form for , is that in (9), and we easily find
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Xs<:{0?8tqﬁ>: "“B{ O(SIBmt){coslq') 1t 1}{cos( +2)4

s 51N

COoS CoS
(

+ 20{ tp + {i,t} {gm t — z)¢>f . (14).

sin

(5.) 7o find Mq’ { 8 1 )

1 now use the form x, as defined in (5), where D, is given in (2), so that

We have

DS(CD{C?SH/)\) _ {sm i+ LB (1 + ]){sm( £ 4+ 1B(1 — 1) {Sm(t — 94
\ s "/ / T COs

and

Dp(ef )= 0| = e{e £ 180+ 00+ 2 {0+ 29

T T |

The latter terms of y, contribute

o (=g {Sp—1mi+ [ {0+ (- 2]

S

Therefore

/. [cos 2(s* — *) [cos )
XS(CI)«{k. t¢>> = — 18D {— 5 isin i+ {1, ¢t + )} “iu (t + 2)¢

COS

+"T{:}:t¢ + Ut =1 {Sh;(t~ 2)<l>} . (15).

§ 6. Determination of the Coefficients in the Functions.

In this section I use successively the four results (12) (13) (14) (15) obtained in
the last section under the headings (a), (8), (y), (3).

(OL) ias fo (ZS"E)S __‘__ S[)’”(]_\. B 2””1_‘)»' - 2n + _\_"180(]’\ 1)\ T m

The limits of the first ¥ are 1 to s or § (s — 1), and of the second 1 to 3 (¢ — )
or k(1 —s—1).
.
Applying the operation s, to J8* and equating — ;G Y, (33°) to zero, we have
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28n(s — n)B g, o, P — 28n(s + n)B g, 0 P
+ q, [Pt — 20P° + {4, s}{s, s — 1} P77
+ Eﬁnqs_%[Ps—Zn+2 — 20_Ps-2n _{_ {’L, G 272’} %'I:} § — 91 — 1} Ps~2n~2]
+ 2}6};/-({8',_271[Ps+2n+2 — g Pt _I_ {Z, S + 271} {Z, S + 20 — 1}Ps+2n—2] = 0,

The coefficients of the P’s must vanish separately. This gives from the coeflicients
of P*~ % and P** * the following :—

2[4n(s — n) — Bo]qs -2 + BGs 20—
+ {1, 8 — 20 4+ 2V {4, s — 20 4 1}qg,_0n 0 = O,

- 2 [4%(8 + W’) + BO-:IQS+2':2 + qs+- 27— 2
+ B{i, s 4+ 20 4+ 2} {4, 5 + 20 4 1}q 12000 = O.

These equations may be written in the form

205 — 20 __ —{i, s — 2n + 2} {i, s — 20 + 1}
o —2n+ 2 dn(s — n) — Po + 152 (22;:2i;72\ )
” / . (16).
Paron Y -
q‘f+2'"‘"2 dn(s + n) + Bo — BMe, s 4+ 2n 4+ 2} {4, s + 20 + 1}(\2—{?{“{53)

Whence by continued application, the continued fractions

2pom _ = s =2t B fis = 4 3B = Wb fis = I = )
G -2 4n(s — n) — Bo — 4(n + (s —n—1)— ..

=184, 5 — 20 — 2r + 24{t,8 — 2n — 2r + 1}
293—2n—27‘—2> 5

4(n + 7)(s —n — 1) + ﬂgﬁ(

' . Qs — 2n — 2 (]6)
2w L 18l s + 2n + 2} {i,s + 20 + 1}
Gsrom—o 4n(s+ n) + Bo — dn + 1)+ n+ 1)+ Bo — ...

—1Bd, s + 2n + 2r}{i, s + 2n + 2r — 1}

e . . 204 9n10n
An 4 1) (s 4 n 4 ) — BBGs + 20+ 2 + 2} (i, + 20 4 2 + 1}( 2stanrer+e)

N f]&+2n+2v //

We must now consider what I may call the middle of the series, which corre-
sponds with # = 0. Tn this case each of the ¥’s contributes one term and the ¢, term

gives another. The result is
- 20_93 + qu~2 + qu‘i-Q{?:J S + 2} {?’J $ + 1} = O>

or Bo = 1B <Z—9q—‘3> + 1B, s + 2} {4, s + 1) <29q_“\)

Since 2¢,_,/qs and 2q, . o/q, are expressible as continued fractions, we have an
equation for Bo, if the continued fractions terminate.
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We shall now consider those terminations.

First, suppose that s is even, corresponding to types EEC, OEC.

The first continued fraction depends only on the first 3. The condition to be
satisfied 1s

2{@5%(8-—':@01) + 2(s® — 4) 135<s~4>%1).z + ...
+ BFq [P? — 20P + {4, 0} {i, — 1} P~
+ BFe-0g, [Pt — 20P* + {4, 2} {7, 1} P)
+ B9, [PS — 20P* + {4, 4} {3, 31PY| + ... = 0.

Since {7, 0} {5, — 1} P~? = P? we have, by equating to zero the coetlicients of
P and P?, results which may be written
2, _ —{i, 2}, 1} 2 — {i, 4} {3, 3}

—_— (2 _ 3 bl ) 2 .
s S Bo 4 st — 4 — Bo + 1B <_(J@>
2

Hence the ¢’s disappear from the first continued fraction, which terminates with

s — Bo

In this last term the 48% which prevails elsewhere is replaced by 8%
Observe that when s =2 the first continued fraction is replaced by a simple
fraction, so that the equation for SBo becomes

Bo = 4 — Bo

\

. . /24,
SR CRURIRUR HSE

/

Secondly, suppose that s is odd, corresponding to the types OOS, EOS.

The condition to be satisfied is now
2(s* — 1) B0 Pt 4 2 (s — 9) B Vg P 4 L

+ B0, [P3 — 20P' 4 {4, 1} {4, 0} P~1]
+ Bie9g [P? — 20P3 4 {4, 3} {1, 2] P]

+ BT, [P — 20 {7 5] {0 43P =0
. . Ty .. 14+ 1! .. ; <o
Now {7, 1} {, 0} P~ 1=q4(c+1) i ;T' P=t=1¢(+ 1) P, and if we equate to

zero the coefficients of P! and P? we obtain results which may be written

o — {1, 8} {4, 2} |
- HGR
243 14, 5} 4, 4

] 20\
95 P — 0 — Bo -+ :%13’ (:{Zl)
Y3
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Thus the ¢’s again disappear, and the first continued fraction ends with

12 (7 2L {7 O
“1/3) {i, 3} {7, 2}

=1 = Bao + B+ 1)’

Observe that when s = 3, the continued fraction reduces to a simple fraction, and
the equation for B¢ becomes

AR AL 2t

— . al . oAl (/2,75\
Bo = ¢ g,k amiti+ 1) A

AW

13267 5
+ 4B, 5%
The case of s = 1 must be considered separately.

We have next to consider the termination of the second fraction, which depends
only on the second X,

First, when ¢ and s are either both even or both odd, the types are EEC and OOS,
and the limits ave & (¢ — s) to 1. The condition to be satisfied is

— 2 (i — ) D P — 2[(f = 2)F — ] B g, P —
4 BE=9g, [PiH? — 20 - {4,040 — 1} P77
+ Bii-s=D g, [P — 20P 7% 4 {1,0 — 2} {1,1 — 3} P
+ Bii=s=H g, [P — 20P 4 {40 — 4} {4, 0 — B;PT0 4 L = 0.
Now PI*?is zero, and equating the coeflicients of P’ and P/~* to zero we obtain
results which may be written

20 1 .
Gis P? — &+ Ba’

270"9 — 1

T2 g ge — i — 1T

Ti-a/

Hence this continued fraction ends with

S I Ry
7 — §* 4+ Bo

Secondly, when ¢ and s differ as to evenness or oddness, the types are OEC and
EOS, and the limits are & (t—s—1) to 1. The same investigation applies again when
7 is changed into ¢ — 1.

Hence the continued fraction ends with

3B — 1Y i — 2}
(i — 12 — 2 + Bo

The cases of s = 0, s = 1 must be considered by themselves.
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When s = 0, the types are EEC and OEC. The “middle” of the series is now
also an end, and the condition is
— 8q,P* — 8.2°Bg Pt — . .. 4+ ¢ [P — 20D + {7, 0} {t, — 1}P~?]
+ B, [P — 20P% + {7, 2340, 1} P] + B, [P® — 20P* + {4, 4} {2, 3} P¥] -} ... = 0.

Writing P? for {s, 0} {7, — 1} P~? and equating the coefficients of P and P? to
zero, we have

Bo = 440, 135,23 7).

4+ Bo — 184 3} {0, 4) @24;)

T 1824, 1} {4, 2} 1B82{4, 3} {4, 4} = 1B{1, 5} {1,6}

Therefore  Bo = 414 Bo— 1.9 4 Bo — LT B —

T v (18 U A | R o =B — i —2)
ending with 21 Be for EEC, and with G — 1) + fo for OEC.

Next when s =1 the types are OOS, EOS; the “middle” is again an end, and
the condition is '
—8.1.2¢,P®—8.2.38¢;P°— ... + ¢, [P®—20P" + {4,1}{s,0}P]
+ B [P? — 203 4 {4,8} {4, 2} P'] 4 B, [PT — 20P% + {¢,5} {4, 41P¥] 4 ... =

Writing ¢ (7 4+ 1) Pl for {s, 1} {7, 0} P~ and equating to zero the coefficients
of P! and P2, we have

Bo — 481 (i + 1) = 4843, 3} 41,23 (1),
Y 1 vy
T 412 4+ Bo — B, 5}Hi4) <21»>

Therefore
1P o 38, 33 e, 28 % °{' 5} {1, 4} :}B {0, TH{G, 6
Bo 91874(7"""»]-)—4_1.2_!_60_“_ .2, +BO"-“" 4.3 4+k30'——...

— 1Bi, o} {o, 0 — 1} Oc L =AM — 1 — 2
p = for OOS, and with —* .
2 1 B for , and with G 1 e for

ending with
EOS.

(B.) We have next to consider the .other form of P-function for types BES, OES,
00C, EOC, namely,

P = Q¢+ 3B, oD o SBy P

2 1+pvg
- =5
2 1"" .

v
VOL. CXCVIL—A, 3 Q

v

where Q = <
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Let us write ¢',4., = (s 4 2n) ¢,40.. The ¢’s are not now the actual coefficients
of any P-function, but we shall see that they are determinable by almost the same
relationships as those already found, and therefore the notation is convenient.

We now have ‘

P = Q[q,sP 4 3Bq, .o, (s = 2n) P2 4 5B, (s + 2n) P*#]
Applying the operation i, to P* and equating — Q% ¥, (P?) to zero, we have

380 (s — n) (s — 2n) g o, P 7280 (s + n) (s + 2n) 0T
+ (s 4 2) P2 — 205P" + {4, s} {t, s — L} (s — 2) P77

4 B, _u[(s = 20 4 2) Pt — 20 (s — 2n) PP
+ {i,8 — 2n} {5, 8 — 2n — 1L} (s — 2n — 2) P77

4 3B s o[ (s 4 20 F 2) P — 20 (s 4 20) PPE
4 i, s+ 20 {t,s + 2n — 1} (s + 2n — 2) T =0,

This is the same equation as before, if we replace tP* by P. As we may equate
coefficients of (P to zero (instead of coefficients of PY), we obtain the same equations
for the ¢’s as before.

A certain change must, however, be noted with respect to the beginning of the
first series, which determines the end of the first continued fraction.

We previously wrote P? for {7, 0} {¢, — 1} P~*and ¢ (i -+ 1) P for {4, 1} {z, 0} P~".
But the corresponding terms will now be {7, 03 {7, — 1} (— 2)P~*and {4, 1} {7, 0}
(— 1) P71, and these are equal to — (2P?) and — (1. P'),

Hence it follows that when s is even (EES, OLS)

29y __ = {620 {5, 1 2q, _ — {64} {5, 3}
% $— B oo # 4B

The ¢, term has disappeared from the latter of these, and thus the continued
raction is independent of ¢, This is correct, since whatever value (short of infinity)
q, may have ¢/, being equal to 0g,, vanishes. Ilence the continued fraction is
docked of one term and ends with

— 18204, 4} {4, 3}
e 4 - o
It is important to note the deficiency of one term in the fraction,.since it indicates
that when s == 2 the first continued fraction entirely disappears.
When s = 0 there i no function of the P form, so the question of interpretation

does not arise.
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When s is odd (OOC, EOC) the only change is that ¢ (¢ 4+ 1) enters with the
opposite sign, so that the first fraction ends with

— $8°{%, 3} {4, 2}
& — 1 — Bo — 4Bi(i + 1)

When s = 1, we have Bo + 1B8:(2 + 1) equal to the same fraction as before.
When the ¢’s are determined we have ¢y = tq. But it is desired that in the
case (@) ¢, should be unity, and that in the case (8) ¢ should be unity. This con-
dition will be satisfied in the present case if we determine all the ¢’s, put ¢, equal to
unity, and finally take
sk 20

S

QS * 217,“

’
Qsi2n

Thus in both (&) and (8) we put g, equal to unity, and in (8) determine the ¢"s by
the above equation.

(y-) We now have to consider the cosine and sine functions.

For EEC, EES, O0C, 008

@ o
(o= 0500 + 38w {056 = 2009+ 3 G (5 + 2004

Cos { Ccos

The first 3 has limits Ls or § (s — 1) to 1, the second & (v — s) to 1.
2 s
Apply the operation y, and equate — B Xs <{gs> to zero ; then

COS cos

(s — 2n)¢p + =8n(s + n) B 'p,, gn{sin (s + 2n) ¢

sin

— 38n (s — n) B"“lps~m{

Cco8s COo8s cos

+ p, [{2', o 1} {Sm (s + 2) ¢ + 20 {Sin sb + {3, s} { S (s — 2) 4)]

cos cos
(

+2B”p_2,,,[{i,s—-2n+1}{ (s—2n+2)<;5+2o-{

sin sin

s — 2n)¢

cos

+ {7, 3 — 2n} {

sin

(s — 2n — 2)q5]

+ EB”}DHQ,,[{'[, s+ 2 + 1} {‘S’fj (s + 2n + 2) ¢ + 20 {Zfs (s + 2n)

n

+ {7, s+ 2n} {Zﬁf (s + 2n — 2)(1)] =0.
3qQ2
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It we equate to zero the coefficients of {C-O ® (s 4 2n) ¢, we find

Sin
2ps oy {1, s — 2n + 2}
Poowrz dn(s = n) — Bo — M {i s — 2 — 1} ( 2Ps s> >
. Pson
21’“2"_ . —{hs+ 20 —~1
Proz-e n(s + n) + Bo + 1B {i,s + 2n + 2} <?227:+2”+?\)
Psvon /

These will, as before, lead to continued fractions, and by elimination of the p’s to
an equation for Bo. The equation will agree with our former result, for it can of
course make no difference from which equation we determine o.* It follows then by
comparison with the previous result (16) that

Ps—on _..,WL"“._ s "l,
Ds—on o {7’) s = 2n + l} s — 7n+7

Z . Qs +on
P {@, s 4+ 2n — 1} RS ,
DPspon s Tson—2

Hence when the ¢’s are found, the p’s follow at once.

(5.) For OEC, OES, EOC, EOS

{g: — cp[ Ps {OOS sd + 2,6‘”199_”{0‘0& (s - 2n) ¢ 4+ S 12 {Zfs (s + 2n) 4)]’

S sin
where ® = (1 — [ cos 2¢).
The limits of the first 3 are Ls or & (s — 1) to 1, of the second & (v — s — 1) to 1.
Proceeding exactly as before we find

2p's _sn {i,8 — 2n + 1}
y - ) “ o —2 ’
Ps—oue dn(s — n) — Ba — 1B {i, s — 2n} (&_L_>

S~2n |/
20 s om — {1, s + Zn}
o o
Povm=z da(s + n) + Bo + 18 {is -+ 2n + 1}<“‘p+‘m‘>

Plspon

By comparison with (16) we see that

e . 5 .
P sonse {@, s = 2n + ))’ s —on 12

|
|
I

29 a;ten —_— e {'Z.,S + 271/} l&ui:‘lrn_

ZJH,,Z,) , s 1on-2

Therefore when the ¢’s are found, the p’s follow at cnce.

* 1 have of course verified that this is so.
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We may now summarise our results, as follows :—
In the general case where s is neither 0 nor 1, B¢ is the root which nearly vanishes
of the equation

=B st fi, s — 1} 18 {i, s — 2} {i,s — 3}

o = £1G—1) —Bo—  4.2(s = 2) — Bo — ...
18240, s + 13 {i,s + 2 2820, s + 3} {i, s 4 4}
T A6 D+ B - 126+ 2) + Bo — ... °

The continued fractions terminate variously for the various types of function, The
end of the first continued fraction is as follows : —

For EEC :—-éﬂ-i@’—l}:{l—%}, and when s = 2 this is the whole fraction.

s — Bo
For EES :-§B_3_{Z~§_}‘g:;4~}, and when s = 2 the fraction disappears. -
For O0C — - P2 3 ; and when s == 3 this is the whole fraction.

£ —1— Bo — 1Bi(i + 1)

—18 {4, 2} {4, 3} .. .
4 ? ¢ . wl § == J this I Y W ¥
P - Bo + BT T) and when s 3 this is the whole fraction.

For O0S

s .
For OEC 2/; {i’ ]B}U‘{L’ 2} ; and when s = 2 this is the whole fraction.

) — 1B {1, 3} {1, 4}
For OES 24 B

and when s = 2 the fraction disappears.

=B {y 2} {i, 3} . N - e
For EOC I — V. T A T and when s == 3 this is the whole fraction.
, — 182 {4, 2} {i, 3 .. ' .
For EOS ERURIS UL : and when s == 3 this is the whole fraction.

§ — 1 — Bo + $BiG + 1)

For the first four of these types, viz., EEC, EES, O0C, O0S, the second continued

fraction ends with

=BG~ 1)

S ; and when s = ¢ this is the whole fraction, but with the
2 — & + Be

sign changed.
For the last four, viz., OEC, OES, EOC, FOS, it ends with

~ 4B {0 — 1} {i, 0 — 2}
(i — 12— & + o

; and when s = ¢ — 1 this is the whole fraction, but

with the sign changed.
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When s = 0, the equation becomes

Bo 82 {4, 1} 14, 2} 187 14, 3} {4, 4}

——4:12 Ba — 4.2 + Bo — .7
. .. . - st — 1
ending when 7 is even (EEC) with =4 f@ i} 2 : }
< a

and when ¢ is odd (OEC) with (=0 4+ B .

When s = 1 the equation has two forms, which may, however, be written together.
If the upper sign refers to cosines (OOC, EOC) and the lower to sines (()Ob EOS),
the equations are :—

. 18240, 2} {4, 3 182 {i, 4} {1, 5
Bo £ $Bi(r 4+ 1) = fﬁh{é +j f@i, i 4_42ée:{$+ },’8;{: —-}... ’

— 12 D e
ending when i s even (EOC, FOS) with — (21 = ULt 2,
— i) (i i = 1)

7 — 1 + Bo °

and when ¢ odd (OOC, OOS) with

It might appear at first sight that a difficulty will arise in the interpretation of
these results when ¢ is small, for the numbers in the denominators of the fractions
increase, and yet it is possible that the number at the end should be smaller than that
at the beginning; thus apparently the fraction ends before it begins. But this
difficulty does not really arise, because in such cases the numerator will always be
found to vanish, and thus the whole fraction disappears. For example, in the last case
specified, if s = 1,7 = 2 the denominators, according to the formula, begin with
8 4+ Bo and end with 0 4+ Bo; but the fraction has for numerator {2, 2} {2, 3},
which vanishes.

When Bo has been determined we find the ¢'s by the formulese—-

e _ —{hs =204 2 {hs — I+ 1} GBS — 2ad i s — 20 — 1}
Qo—omr2 4n(s — n) — Bo — d(n + 1) —mn — 1) — Bo — ...~
205 + 2 _ 1 ] 3Bd, s + 2n 4 2} {4, s + 20 4+ 1}

Gs+om—n dn(s + n) + Bo — d(n + D(s+n + 1)+ Bo— ...~

The terminations of the continued fractions are as specified above in the equation
for Bo.

By forming continued products of ratios of successive ¢'s, we can find all the ¢'s as
multiples of ¢,, and ¢, = 1.

In the cases EEC, OEC, 008, EOS, these are the required coeflicients for 13"
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In the cases EES, OES, OO0C, EOS we put ¢, ,, == _s% 2—Mq 4+ 2, and thus find the

coefficients for P

The coefficients for @€, $ in EEC, EES, O0C, OOS are determined by

,B‘f,:ﬁ__,, —_— 1 V_(js — 29
Ds—2n 42 (5,8 — 20 4 1} ¢y2n 42

Ds + 20 — }% s 4 20 — 1} s + o )
,ps—k‘ln—z g¢42n——

The coefficients for C, S in OEC, OES, EOC, EOS are determined by

’
P s — o 1 "98—21'4

p’s—-2n+2 {/I:,S-— 277’ + 2} gs—2n+2’
Pl Qs+ 2
s+2 g s+ 2
Parmo s oon) Dem
Psvon—2 Qs + 20 - 2

Tt follows that if we put ¢, = 1 and p, = 1

1
—— n 4
Py e ( ){7},3-—2n+1}{i,s——2n+3}...{i,s—-l}q““”’

Pevow = (=Y, s+ 20— 1} {, s+ 20— 3. .. {5,884+ 1}¢ 0.

‘ [ 1
Poow = (=) G o o s = 2n g 4] . {5 D

Povon = (=), s+ 2n}{t,s +2n —2} ... {5, 5+ 2} q 0.

When s = 0, g,/q, is equal to that which would be given by the general formula for

"(Ix+ 2n

~ when we put init n =1, s = 0. Hence it follows that the ¢’s for s = 0 have
.[ﬂ +2n—2

double the values given by the general formula.

If we change the sign of s, the two continued fractions in the equation for B¢ are
simply interchanged. Hence Bo is unchanged when s changes sign. Also, since
{1, ¢} is equal to {— ¢ — 1, ¢}, Bo is unchanged when — ¢ — 1 is written for 2. A
consideration of the forms of the ¢'s and p’s shows that ¢_,,. P7*"* 1s equal to

!
—sl! ,
Tl-u Pr=#% and therefore
I S


http://rsta.royalsocietypublishing.org/

A
N
. 0

/

e

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

\

3

Py

///

AL

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

488 PROFESSOR G. H. DARWIN ON ELLIPSOIDAL HARMONIC ANALYSIS.

- § 7. Rigorous determanation of the Functions of the second degree.

If' a numerical value be attributed to 8 it is obviously possible to obtain the
rigorous expressions for the several functions. Thus, if 8 were 4 we could determine
the harmonics of the ellipsoids of the class ¢® = & («* 4 0*). But I do not think it is
possible to oktain rigorous results in algebraic form when 7 is greater than 3. In
order, however, to show how our formule lead to the required result I will determine
the five functions corresponding to 7+ = 2, but I will not work out the case of 7 = 3,
although it is easy to do so.

When s = 0
_ B2 1p g 20 128
Therefore Bo = — 2 4+ 2(1 + 387, or writing B*= 14 38 for brevity,

Bo =2(B —1). Then putting ¢, = 1, and remembering that the value of ¢, is
twice that given by the general formula,

L B
R Y
Therefore B, = Pg—[r——Bés—jB*ngz. Ce e e (17,
where P, = $? — 4, Py? = 3 (»* — 1).

The coeflicient of the cosine function is given by

Py == {2, 1} gy = — 6q,.

B -1
Therefore @2::1———-&—0082#). Coo oo oL (18).

s = 1, cosines ; EOC type.
The continued fraction has 18%{7, 2}{7, 3} in the numerator, and vanishes because
{2, 31 = 0. Therefore

Bo + Bi(t 4+ 1) = 0, where 1 = 2.

Therefore o= -3,

But the coeflicient is independent of 3, for

Pt = 0[q/P,'], and ¢, = 1.
o 148 '
VTSR P e s (zml + By
/\/ = P, = 3v v - 5) . (19).

Clearly C,! = cos (1 — Brcos24)F " . (20).

Therefore P,

I
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s = 1, sine; EOS type.
The continued fraction again vanishes and o = 3, but it is not needed to express
the functions. Putting ¢,"=1,

P! = ¢/ Prl=Pl=380@*—=1)F . . . . . . (21),
S,)) = sing (1 — Beos24PF . . . . . . . . . (22)

s = 2, cosine ; EEC type.
The second continued fraction vanishes because it contains {2, 3} in the numerator.
The equation is then

_ a2z = 128
o = 4~ Bo ~ 4= B
Therefore Bo = 2 — 2(1 4 38%)' = 2(1 — B). Then putting ¢, = 1,
=% 4 — Bo = B .
— 2(B — .
Therefore P = ﬁ:'(% =Y P4+ P20 o000 (23),
where P, = 5 — 1,
Pr=30*—=1)
] 1
Then Py= =G = 40 and
b -1
¢} = aE 4 cos24. . . . . L L L L (24)

s = 2, sine; EES type.
Both fractions disappear and o vanishes, but is not needed for determining the
functions. Noting that ¢)"= 0, and ¢," = 1,

/ \ &
P = 0[P, = ?Qv — ) =) L (2D),

&r=wsn2¢p . . . . . . L. (26)

We can write down the functions of w by symmetry, and the products of the three
functions give rigorously the five solid harmonic solutions of LaArrace’s equation of
the second degree. As I have remarked above, the seven harmonics of the third
degree may be obtained rigorously by a parallel process.

§ 8. Approximate Form of the Functions.

It is clear that the first approximation to Bo is zero, and that the second approxi-
mation, in the general case, is
VOL. OXCVIT.— A, 3 R
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o Ui s — 1} {i,s + 1} {4, s + 2}
,80' [ J— ,1L6_BZ .m,._;,:_l.ﬂ, -t .y ,8 -

= 1B <39~ — 20(s + 1) — %;}%3

'22 we should obtain ¢, , correct to 82  But

qs

If this expression were inserted in ~

since the next approximation would only introduce 8% it follows that ¢,,, would be
correct to 8% inclusive. Now ¢, ., enters in the functions with a factor 8, and there-
fore this approximation would give results correct to B* inclusive. Since the similar
operation could be applied with equal ease in all the cases in which the continued
fractions assume special forms, it follows that this degree of accuracy is very easily
attainable. However, the forms of the coeflicients would be rather complicated, and
it would render the subsequent algebra so tedious that I do not propose at present to
carry the approximation beyond £

It now suffices to put ¢ = 0 in the denominators of all the continued fractions,
whereby the coeflicients are determined, except in the cases of s = 1, s = 3, where
we put o = 4 5¢ (v 4 1).

In the general case we have

$0, 8} {6, 5 — 1} i
: — 1 bs s — b —
s—p = 5 s — 1 ) Tsv2 8(s + 1)°
Cfi s e — 1} {i s — 2} {i,s — 3} _ 1
Gimy = 128 (s — 1) (s — 2) T 986 4+ 1 s+ 2)
, s — 2 V Y s+ 2
Ts—2 = qs—29» Tsva = T Qovos
, 8§ — 4 , s + 4
Ts—1= "o D-w Tora = 77 Qssts.
’ . {L_f_}ﬁ. . - {715__" 1}
P2 =g -1 Pev2 = T8 + 1)
PRI L& UL} Py = o3 H A Hhs £ 3
P98 (s — 1) (s — 2)7 T8 (s + 1) (s + 2)
oo s =1} o mihs+ 2
Ps—o= 8(8—1)’ Psea = 8(§+1) ’
, _ {i,s =1} {4,5 — 3} {i,s + 2} {1, s + 4}
Poms = 108G — 1) (s — 2) ° Pers= 186 + 16+ 2)
When s = 0, we double the results given by the general formula and find
G=73, G=135, P = — {6 1L, ps = T%§ {r, 1} {z, 3} } (28)
There are no gy, q), and p) = — {0, 2}, p,/ = I {1, 2112, 4]
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When s = 1,

qs = m = (1 & % B(¢c + 1)), with upper sign for cosines

(EOC, O0C) and lower sign for sines (OOS, EOS).

75 = Tas-a—3 = 7ug for all cases.

But for O0S, EOS we use the P form, and for EOC, O0C the P form; and for

2 s+ 4
the latter —i—— = 3, e

S

Therefore f01 008, EOS (sines)

Crj=t

il

¢ =161 —Bi(i+ 1)), ¢ 7”8”\’
and for EOC, OOC (cosines) L .. (29).

0 = (LA Bi+ 1), ¢ = ks |
For OOC, OOS, with upper sign for cosine and lower sign for sine,
ps=— sl B (LB + 1], po=dsii 24} . L (29)
For EOC, EOS, with upper sign for cosine and lower sign for sine,
ps = =2 (6311 B+ V)] P = v 1,350,50 .. (29),

When s = 2 the coefficients may be derived from the general formula.
When s =3

v e (i LA UE R UL HLE SV T OB SN

the upper sign applying to cosines (OOC, EOC) the lower to sines (OOS, EOS);

But for OOS, EOS the 3 form applies, and for OOC, EOC the P form apples.

§ — 2 s+ 2

. . + 4
Also with s = 3, = 1, — =% —

UM
H - 3

w
Vel
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Therefore for OOS, KOS

==L 3 =B+ D] =5 ¢ = wdo )
For OOC, EOC
9 = =4 2003 L+ 6B+ 1) ], = &%, 0 = w5se-
For OOC, OOS, with upper sign for cosine and lower for sine,
Pro= 1 331 kB + )], py= — ":,;13{1',4} > (30).

For EOC, EOS, with upper sign for cosine and lower for sine,

Pl =A% 5 2 L £ B+ )], = — 5 {405,

/

It will save much trouble to note that if we were to admit negative suflixes to the
¢'s, the general formula would give us the term B%¢_, P~1, where

{¢8} {¢,2} {4,1} {4,0}
-1 = 128.2.1 .

Thus this term is (T17 %4 1). {4, 3} {7, 2}P.. But this is exactly that part of

the term in (30) which arises from B¢, P!, but which is not included in the general
formula.

Similarly the general fonnula gives for ¢'_,, p_,, p'_, those parts of the terms
arising from ¢/, p,, p,/ which are not included in the general formula.

It follows that in much of the subsequent work we need not devote special
consideration to the case of s = 3.

§ 9. Factors of Transfoirmation between the two forms of Pfunctzon and
C- or S-function.

The rigorous expressions I and P* always differ from one another, but approxi-
mately they are the same up to a certain power of 8, provided that s is greater than
a certain quantity.

(PR 28 Y ~

Since O = \‘;,T"‘“) < + o HaZ B)) , 1t 1s legitimate to develop Q in powers
of 1/(»* — 1) up to a certain power, say ¢, provided that it is to be multiplied by a
function involving at least (»* — 1) as a factor; for this condition insures that there
shall be no infinite terms when v = 4 1. At present, 1 limit the development to 2,

so that

=1 = BEF
Rl % s }
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Therefore
/ B+ B 8 B ) 9 ,
[ — — [ L $ — - g — . s+ 2
Pr= (1= = g B (1= 55 (Bro P B P )
+ 182(1,3—4Ps~4 -+ qu,s+4Ps+4-

It 1s obvious on inspection that we cannot rely on this development if s is less
than 4.

If then s 1s equal to, or greater than 4, this value of P?, when properly developed,
to the adopted order of approximation can only differ from 33° by a constant factor,
say Cf or shortly C*; so that

Pr=CP. . . 0.0 (31),

and we have to determine the constant C.
We might develop the above expression for P’ completely and compare it with

9%, but this is unnecessary since the comparison of a single term suffices.
I now write

i+ 1)

-1

3= (32),
or shortly 3. This notation is introduced because this function occurs very frequently

hereafter.
We have seen in (11) (slightly modified) that

s

s

N

b ps o Lbstihs =1} o
{s(s 1 1). 2<2 + )P+ s(s — 1) P 2}'

We may write this

])x s+ 2 8 ] g —
F_lzasP'-k +188P+1'T"}’3P 2;
1 _ {4, s} {4,s — 1}
‘her == = — 3 = e’
where @ =G 1 Bs LE41), 9 Lo —1)
s . . .
Then (I ag(a, 4o PP 4 B o Pty PY)

B P B g P
+ 73(%‘”2P8 + Bs—‘zPs‘z + 73—2Ps~4).
Therefore the coefficient of P* is ays e+ (B) + a_ vy, or

a [{is+ 2} {is+ 1}
POl s(s+ 1P (s + 2)

, 0,8y (s — 1
+a o PR
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I now introduce a further abridgement and write

Vel .
Tf':@ )LS(’;‘—_#L—LI)(@,%»Z)_ L (82),

or shortly T.
Then, after reduction, I find

s 9 9 )
(*7'/5 _:*1“);, = 4[— 3%+ 3"+ 43 + 3 + T] P4

Accordingly the coefficient of P*in P¢ is

L AB(E + 1) 4+ 38 (E + 1) — B[ — X% 4 3 4 43 4 3 4 1]

{is + 1 {5, s + .3}]

c (j, -2 ’
— 13 "‘S‘—:"é; + G

L — (s (s + 1)(s +2)
y (s — 2){s, s} {4, s — 1} , s+ 2 .
But ¢, , = — S50 — 1) s Qe = 850G 1 1) and the last term in the

above expression will be found to be equal to 4+ §8*(2* — 1). Thus the coefficient
of P¢in the development of P¢ is

L+ 4B(E 4 1) + 4B (3% 4 32 + 45 + 3 —7T);

but the same coeflicient in 39° is unity.
Therefore

1

s
Zi

Cr =1 — 3B + 1) + %8 (— 3% 4 350 4+ 43 4+ 1 4+ 7)

'(()113)2 =14 B(E -+ 1) + %,82(2932 + 322+ 88 4+ 5 — T)

(I

L 3B (S 4 1) + 1B (33 + S 4 43 4+ 5 — 7)

. (33).

(Crp=1—B(E+ 1)+ 38 (~ 3%+ 552 + 85 + 3 + T)

The squares of this constant and of its reciprocal are given because they will be needed
at a later stage. '

‘We next consider the cosine and sine functions.

(8§ =o[lmm+ mrfi—no+...]

sin

As far as §°

® = (1 — Beos2¢) =1 — 4Bcos2¢p — &B*(1 + cos4g).
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Therefore

{g: = [1 — 3B cos 2 — B (1 + cos 4(;’))]{0Oq

+ 8| 1o =2+ P s + 29 [1 = bBeos2g]
+ 87 s = 06+ B {6+ )6

This expression, when developed, must lead to @ or & multiplied by a constant
factor.
& C
Let {ﬁs = D {Ss . . v e e . . . . (34)~

Then Dy or D* may be found by considering only the coefficient of {:(; s¢.  Hence

l])f =1 — 58 — 1B . — 1B su
Po-et Plie=13(E + 2)
Therefore
ﬁf}} =1 =68 E+3) ]
1 f . (35)
oy =1 8 (2 + 3) J}

The reciprocals may clearly be written down at once.

There are no factors by which 9%, §3°, ' can be converted into P3 P2 P!; but
this is not true of the cosine and sine functions.

In the case of s = 3, it will be found that the general formula holds good for the
factor whereby @*, &* are convertible into C?, S5,

When s = 2,

[§ =11 — 4Beos2p — 3B (1 + cos sl 70 2 + B, (1 — 5,8008295){

S‘ 1

+ Bp', (1 — }Bcos 24) { 1+ B 6.
Then
O = [1 — (& + ¥y + dp') BTeos2p + ...
S = [1 — (g% + 2p") B sin 24 + e
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But P,O = %i% ]} H pl+ - - ‘ﬂ_ {Z 4} 2)6 = "1":“3'() {Z, 4}{ia 6}7 and
5+ W0+ i =55 (52 +7),
/ - 1
35 + L', = — 4% (2 —5), where3 »—Z‘SZ_F g 5 (0 4 1).

Therefore the factors are

. ~(cos) = 1 — 48 (53" + 7),
. - (36).
D2 (sin) = 1 4 45%B°(3* — 5)

It is easy to verify that the other coeflicients of @* and &* ave in fact reproduced.
The notation adopted here and below for distinguishing the cosine and sine factors
is perhaps rather clumsy, but I have not thought it worth while to take distinctive

symbols for the factors in these cases, because they will not be of frequent occurrence.
When s = 1,

{gf = [1 = 3B c0os 2 — B (1 + cos 44;)]{

b+ Bp's (1 = 1B eos 24){ 34

sin

CcoS

+ 87 {sin b¢
— - 1 i@ COSs
[LF =18 (i + D] { b+
1
This must be equal to ! {g
Now, with upper sign for cosine and lower for sine,
Py= —{u 3} [1 £ 4%Bi (0 + )], ps = 765t 3}{5, 5},

Subétituting for p/y its values, we find with the upper sign

“(00‘3) =1 =B — 1B (s + 1) =1 — 1B+ B[+ 1) = 10].)

And with the lower sign (37).
lil(sm)— L+ 48— 1B (ps+ 1) =14+ 48+ 46 [« (t + 1) — 10]
It follows that
D} (cos) = 1 + B — 4B [i (¢ + 1) — 14]
D (sin) =1 = 1B — 4B [i(0 4+ 1) — 14]
-1 s

3 (€09)| T =1 = 1B+ ARG+ 1) — 8]
[D‘(cos)]z =1+1B—LRGE+1)—16]( "
7 (sin) | = 1 4B+ BT+ 1) - )

(D) (sin) P = | — 4B — 556 [¢ (¢ + 1) — 16]

. (37).

L{)
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We cannot in the present case use 3! as an abridged notation, because it is infinite
as involving s* — 1 in the denominator.

It is easy to verify that the other coeflicients of @' and &' are, in fact, reproduced
in the transformation.

Lastly when s = 0, we have only cosine functions. As before

C =1—}Bcos2p — 5B (1 4 cos d¢p) + Bp's (I — 4B cos 2¢) cos 2¢
' + B, cos 4¢
=1—:8 — 1B+

. 1
This must be equal to fi, and therefore -— = 1 — %8 — 18%))/..

D,
Now ])/2 = - 2}7{{7 2} > ]),41- = T%‘S‘ {27 2} {7'.7 4} .
1 e ‘
Hence D= 14 %8B (¢ + 1) — 3] (38).
Since 1n this case 3, = 1(71:%") ,
1 N
]); == 1 — ’fé;B" [Zl ‘I— 3] . . . . . . N . . . (38).

Thus the general formula again holds good.

1t is easy to verify that the other coefficients of @ are in fact reproduced.

The principal use of the transforming factors, determined in this section, is that 1t
will enable us to avoid some tedious analysis hereafter.

§ 10. The Functions of the Second Kund.

The second continued fraction of § 6 terminates because
SLs+2n 421G s+ 2n+ 1} =0

when n=1% (i—s) or & (1—s—1), since one of the two factors then assumes the form
$0,0 4+ 17,

Hence it follows that the equation for determining o is the same as before ; but we
cannot on that account assume that the ¢ coefficients vanish when their suffixes are
greater than .

In considering the P-functions it was immaterial whether or not we regarded them
as vanishing, because P’ vanishes if ¢ is greater than 7 But the Q-functions do not
vanish in this case, and therefore we must postulate the existence of ¢'s with suffix
greater than .

VOL. CXCVIL A,

o
2]
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In fact, whilst we have as before, when ¢ and s are both odd or both even,

20 1

—_— T —‘—’
Gio ¥ — s + Bo

we also have

ire _. L ,
Qi . o) ) 129§, P a7 /2%‘4—4
(i 4+ 20 — & + Bo — 18%{1, 7 + 4} {i,7 + 3} (T
. Qv /-
) .« . . 2% E 1
and similarly a fraction for P and so forth.
i+9

It follows therefore that while the ¢’s with suffixes less than or equal to 4 depend
on finite continued fractions, those with suffixes greater than ¢ depend on infinite
continued fractions.

It thus appears that while the first series in the expression for &/ or for Q; has
limits 1 to 4s or & (s — 1), as before, the limits of the second series are 1 to .

Thus we have found an expansion for this class of functions in powers of 8.

In the limited case in which the coefficients have been actually evaluated, namely,
where the development is only carried as far as the squares of B8, we have

1 1
Tor2= g5 1+ 1)° T a = 198 + 1)(s + 2)°
Dotz = g5 1 1) To+a = 198545 + 1)(s + 2)°

These coefficients do not vanish when s 4+ 2 or s -+ 4 are greater than ¢, and this
confirms the conclusion already arrived at.

In spherical harmonic analysis there is no occasion to consider the value of QF when
s is greater than ¢, and the values are therefore not familiar. T will therefore now
determine them.

It is known* that

201
Q= + 1 z[vf““‘é.u@'z‘ (2 + :s)yi‘*'*“l‘ 202141 (2 + 3)(2 + BT

i+ 2! 1 1+ 4! 1
4]

Therefore differentiating

ARE NN S | i4+1 1 G+ DHE+2) 1
<H) Q= ()" -“[,,2; xe B T S R AL b

d 1‘ v
— (___)i+1 - 1 I_;_,_
(U‘“" — 1)1+ 1°
And
CANRAP ( g2t + 10
dv AT e — e

* BRYAN, ¢ Camb. Phil. Soc. Proc.,” vol. 6, 1888, p. 293,
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[\i+? Cian — 20 + 2)0? 1
<C> Q‘:<——)’2 1,7,—4]—1![ (Vi’,___—;)i+: +(7/2 — 1)i+2]?

s [20 20420 0 200120 4 3) .0 4 1
( ) (¥ — 1)i+3 (v* — 1)i+2

I

<"d‘>“‘4 ( 7.[2"““3.7J+3! 20+ 220 + 3).@'—{-2!]
= = (=Y 4
z

A, (1 — 1)i+* (¥ — 1)i+s
‘ : 5 ; AY
But Q= (=1 (3,
. 941
therefore  Qf "' = (=)' (“%‘U

Qii+2 = ( (y _ 1)§(z+é5

gis1 .. (39).
Qi+? = (__)i+1_), ______ v _):'—(7%3) [2¢ + 4 + (20 4+ 3) (»* — 1)] :

L2+ 2 44 2y

Qi+t (_)zm[zz‘ + 6 + (20 + 3)(»* — 1)]

Il

"These are all the functions which can be needed for the expression as far as 8? of
@; or of Q; when s is less or equal to 2. If s is equal to 7, we shall have terms
B i, QT or OB ¢, , QY and these are the furthest.

But it is well known that there is another expression for these functions of the
second kind.
The differential equation is

d?

oy =i ) 00— 1) = e

dv®

[(Iﬂ — 1)
- B[(V ) D B (i 4 1) — o]@; —o,

where @, may be interpreted as meaning also Q.
Let us assume that

@ =y Vi
is a solution, where @, 19* may be interpreted as meaning also Q, P’
Then since 3 1s a solution of the differential equation, we have
(0 — 1) [2v BTy - )PV
_ . rliB 3ams
B(v 1)(»* 4 1)(2V +3ﬁ +2viBV
382
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This 1s eas'ly reducible to

(Z

Lo | V(07 — 1 (12 = )=

iy

& .
whence V = e Loy where @] 18 a constant,

@ - 1 —

Hence
_ dv N
& | oo =1 |
Zy : . (40)
= EP! e = - =

The general solution of the differential equation must be

aP; + v @,

and we have already found both P9* and @°*. Hence the two @*'s must be different
expressions for the same thing, for the form of @' as a series negatives the hypothesis
that it involves J3¢ in the form v, * + 7, Q"

Having then two forms of @°or of Q, it remains to evaluate the coefficients ¢,
E#, which are involved in the equations (40). In order to do this it will suffice to
consider the case where v is very great, so that

\ 271 yi Q2.4 4+ ¢!
Pr—= 2 - Q= (__)x S S L
2000 4 — 1! 2 4 11 pirl

As far as concerns the first term in the series

20! L'~—-9 7 — 8!
P = 51 T [1 + B PRy + B e P
S 4 — ! 4 — 8!
+ By i st 4 + /8],44 e 4:5]
. = 2ol dAsthy it — 2 i+ HZ
@ —(— 2 + 11 i+l + By 7+ 5! + By i+ 8l
s i+ s —4! o i+ s+ 4
+/8(]s-—~4 P "|‘/9(1.9+4 i+ s ]

It will be observed that if s is equal to ¢ or + — 1 the terms in J¥° in ¢,,, and ¢, ,
disappear ; and if s is equal to 7 — 2 or ¢ — 3 that in ¢, disappears. This agrees,
as it should do, with the vanishing of P**? and P*** when the order is greater than
the degree.
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It we write 39* = av' and & = the first of our equations (40) becomes when

+1>

v is very large,

pitl

v o ° dy v r dv
———— T & V

o — £ S ———
Vyé(ayi)Q =€ a plit?

& 1 1

% Bl 9 41

Therefore € = (22 4- 1) ay, and since the «, y in the case of the P*, Q* only differ
from these in the accenting of the ¢’s we have

@ = (=) f,ZL_‘_. [ + B%-u%!‘{! . :I [1 + 573_2% +... :I .

Es = the same with accented q’s.

Effecting the multiplication of the series

¢+ 8! v —s! t+8— 21
€= (-), [ +/3<fls- ey Tl
@——s' z—l—s—{-Z?
+qg+° s ZY + . IA‘;!‘W>
3 — @—!—9——4' ‘ g - 8!
+ﬁ <(Is 47 4;(8"——*[':74: + Qs—4" ~Z+8 + q3+47/ S 11
z+s+4! 1 —8! 14 8— 2!
t G o T Bl T
=38! ¢4+ s+ 2! 7 —8! 445+ 2!
+ Qoo Qs F Q2 Qsye p )

248! g —s =21

=38! 124+ 85-—2!
T Tere e 48! i—s-— 211’
Es = the same with accented q’s.

If we substitute for the ¢’s their values, the coefficient of ,8 inside [ ]in the
expression for @ is

8 s — 1 s —1 ' s+ 1

GC+s+1)0E+s+2)
+ s+ 1 ]

1 [_ T+ @ +s—1) (z —s+ DE—-s+ 2) + (=95 —s—1)

. ' : - — 2
In the expression for E* the first pair of these terms are multiplied by T2 and

the second pair by ——J—r—g
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The coefficient of 8% in the expression for @ is

. [G+@@+s—nq+s~m@+s_m_+@~s+na—s+m@~s+m@_s+@

Las (s—1)(s—2) - (s —1)(s—2)

(=) (i—s—1)(i—s—2)(i—s—3)

+ (s + 1) (s + 2) 0 (s + 1)(s + 2)
+2@+@@+s—ma~s+m@_s+2) 20 =) (i — s — 1) (i + s+ 1)(i + 5+ 2)
(s — 1) T (s + 1)
24— DY@ s+ D(i+s+2)  20i—s—D(i—s)(i—s+1)(i—s+2)]
=1+ 1) =D+ 1) ik

In the expression for E* the first pair of these terms are multiplied b SL,A,_S,% ; the

s 4 - . s — 22 \2
second pair by S:E% ; the first of the third pair by <39-) , and the second by <§_—:~2> ;
—4

S

and the last pair by 5

The reduction of terms such as these will occur frequently hereafter, and I will
therefore say a word on the most convenient way of carrying it out. It is obvious
that the coefficient of 8 may be arranged in the form

AiGi+ 1)+ B(@i+ 1)+ C.

The coefficient A is equal to the coeflicient of ¢* in the original expression, and 1f
we put 7 = 0 we have B 4+ C, and with ¢ = — 1, — B 4 C.  Hence A, B, C may be
easily determined.

Again the coefficient of 82 may be arranged in the form

A (v 4 1) 4+ B(2¢ + 1)2(@ + fl) 4+ Cefz + 4+ D@e+ 1)+ E.
This may be written
A4+ 2A+B)d+A+3B+C) 2+ (B+C+ D)+ D+ E.

It is easy to pick out the coefficients of ¢* 4%, ¢*, and we thus obtain A, B, C.
Then putting 7 successively equal to 0 and — 1 we have D 4 Eand — D + E.
In order to express the results succinctly 1 use as before the notation

i@+ 1)
sf—17

s = @—De@e+1)E+ 2)

S = ,
¢ 2 —4

and I usually omit the superscript and subscript s and 4.
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Proceeding in this way I find

z+s

7/—

€ = (=) L=3BE -1 + o[- £+ 23— 1)
+ 3 (3% — 23 + 2) + 27]}
Ef= (=)} P! ST B (S 4 3) 4 B[ (350 — 23 4 1)

— (3% — 262 — 42) — 27}

. (41).

These results may be verified, for if we multiply & by (@ 5 as given in (33), we ought

to find E*; and this is so. :

The formule apparently fail when s = 0, 1, 2, 3; but when s = 3 they still
hold good because, as remarked above, the general formula for s = 3 gives correct
results when properly interpreted. Thus it only remains to consider s = 0, 1, 2.

When s = 2 the coefficients of 8 remain as in (41). In the coefficients of g*

—_ — 16, N — _ j— 1
Qs =0, oo = — £ {5, 2} {2, 1}, Qoye = 575, Cose = To5.37%

4 — / — ’ — 1 4 — 1
Qs—a =0, ¢s_, =0, Qsre = T35 Qs = TI87T-

In the expression for @ the coeflicient of 8 inside the bracket is

teeesna (30— 2)( =3) (=4 =8 + 30 +3)(t+4) (@ +5)(+6)
+ 720 —1)c(t+ 1) +2) + 8@ —2)(¢—3) (¢4 3)(v + 4)
— 240+ 1)+ 2)@+3)(c+4) — 24 —3) (I — 2) (e — 1)d]. (42).
Effecting the reduction and writing = for 42 (v 4 1), we find

i+ 2!

G =" {1 —3B(2 — 1)+ 3B (1952 — 1303 + 80) . . (43).

i —
The coefficient of 8* for E* may be got from (42) thus:—Multiply the first and
second terms by 3, erase the third, fifth, and sixth terms, and multiply the fourth
term by 4.
Effecting the reduction we find

E:= -§~ 1+ 3B(E + 3) + 5368 (2522 + 1863 + 368)F . . (44).

7

Observe that there is no factor by which §3* can be converted into P?, so that this
case cannot be verified like the general one.
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When s = 1 we have
G-1=0, e =0,  Go=7%1 =300+ 1], ¢.=7is
ica=0, ¢i2=0, ¢iio=1%[1 480+ 1], ¢ =5ls

The terms in Bg, ., and B¢’s,, now contribute to the terms in 8
For ! the term in B inside the bracket is

sl = D@ —=2)+ @+ 2)@+3)] =5l + 1)+ 4],
The term in §°, of which the first portion is carried over from the term in B, is
et (0 DIE =D =2)+ (6 +2) @+ 3)]
+orsteEl = NE=2)0=3)0 4+ C+2)0+3)F + 4@+ 5)
F30 = 10— 26+ 2)( + 9))
This is equal to — =55 [ (¢ + 1)* — 56¢ (s + 1) — 180

As we cannot now use the abridged notation with 3!, which is infinite, I write
fe) ) M

i . . .. (45).
Thus &= — + 1,[ + 1B(J + 4) — 5B (P — 56) — 180)]J (49)

For E;! the coeflicient of 8 is three times as great as before, and the coefficient of
B 1s
tist (0 + D@+ 1) + 4] + 196’ 9.3[5@ = (@ = 2)(r = 3)(i — 4)
5@ +2)0+3)0+YE+ )+ 270 =)0 —2)( + 2) (@ + 3)]
On effecting the reduction 1 find

El= —' T fl 4+ 3B8(J 4+ 4) + 1B (53 4 376 + 1044)]. . (46).

When s = 0 we have only &; to determine. Here

Qo-1= Q2= 0, Qv = 4 Gra = Tise
The term in Bis i(v — 1)+ ¢+ 1)+ 2)] =50 + 1).
That in 87 1s
sl —=DE=2)@—=3)+ ¢+ D+ 2)0 + 3) @ + 4)
+ 83— D@+ DG+ 2] =507+ 14+ 12).
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Therefore
G =1+ +1)+ B0+ 14+ 12) } (47)
=1 = 3B — 1)+ &8 (53 — 148 + 12)) '
since Si=—i(t+1)= —J
Collecting results from (41), (43), (44), (45), 46), and (47),
(s > 2)(&-*=(—)§i5 11— 482 —1)
FaB[— (3% 4+ 28 — 1)+ 3(3* — 23 + 2) 4+ 27},
e = %- (1= 1B(3 = 1) + £hef@[195° — 1303 + 80]},
it 1! . : :
€= — TENO LG+ 4 — B (P — 565 — 180,
¢ = L4+ 38(J + 1) + 6B (5° + 14/ + 12).
_ (48).
i+ s!

(s>2)Ef= (=) i1 + $B(E + 3)
+ -—-,32 [2(35% — 2% + 1) — (32 — 263 — 42) — 27},

Ef= D04 1BE 4 8) + heB[253 4 1863 + 368]},
11 . .
Ei= — oF T {1 280+ 4) + 7B (552 + 3767 + 1044)],
where s = %gf‘ll)’ r— (= l)zg i— i)(z + 2), J=il 4 1)

PART II.
ArrricatioN or ErrirsorpaL HARMONIC ANALYSIS.
§ 11. The Potential of an harmonic deformation of an Ellipsoid.

A solid harmonic, or solution of LAPLACE'S equation, is the product of two
P-tunctions of » and of u respectively, and of a cosine or sine function of ¢. A
surface harmonic is a P-function of u multiplied by a cosine or sine function of ¢.

2 We found
P (v) = P(») + 3B 0P "2 (») + 3B s 0P (),

— at
where P* (v) = (? — 1)} < d> (»»—1); and a similar formula held for P’ ().

‘)’ Lt \dy
Hitherto we have supposed P’(u) to have exactly the same form as P/(v). But
since u 18 less than unity this introduces an imaginary factor when ¢ is odd, and
VOL. CXCVIL—A. 3
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makes the succession of P’s alternately positive and negative when ¢ is even. As
this is practically inconvenient 1 now define '

and then retaining the former meaning for the ¢ coeflicients, we give the following
definition—

Pr(p) = Pr(p) 4+ S (=)Bq-an (1) + 2 (=)"B'q s 2l (1) 5

with a similar formula for P* (u).

Thus we need only remark that in the functions of u the ¢’s corresponding to odd
powers of B enter with the opposite sign from that which holds in the funections of »,
and the whole of our preceding results are true with this definition of” P’ ().

If v, defines the ellipsoid to which the surface harmonic applies, we require the
expression for the perpendicular p on the tangent plane at vy, u, ¢, and that for an
element of area of the surface of the ellipsoid at the same point.

By the usual formula

s a2 g/z 22
PR (V 1 + Z) + I (vy® — 1)‘2 + v, ®

(1 —p) (@ — ) i @ (1 — B cos 2¢)
Ty e ekl TR T

B cos 2

___Q’UQ‘/"‘)(”O",‘,,,,,1—3%) S 1)}
V()Q(Vog“l) (”()g“i%g)

Let dn, dm, df be the three elements of the orthogonal ares corresponding to
variations of », u, ¢ respectively.
Thew by the formula at the end of § 1,

1 — Beos2p

< dn >2 . (v — ) (v — FEy 3 ) 1

—— — ey

Pdv,) Bl — 1) (v — pr) P

|
( dm > _ (v* — ,U«z)(l ulﬁ;c(); % Mg) I

W B =) (IF = )

/ar >° _ O SRR (R - )
e g T~ Bes7p)
9 1 — Bcos 2 1-—;3cos>z[> Y .
Therefore ( df\ (v = 5252 (5 wra—e (50),
7ud§b/ 1 — B COb ‘)¢
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and
pdmdf Li,@ _ (L= fos2s -18_c<;352¢ )
(ksdpdcb,) = (v, — 1)< 1 —B,>(1 B) A= Foos29) (1 = ) ( A g0
4 _p 4
dn ~— &2 vﬂdvo

Two functions, written in alternative form,

ape({2) e (1) wew e

are solutions of LAPLACE'S equation, and together form a function V continuous at
the surface of the ellipsoid » = »,. Reading the upper line we have a function
always finite inside the ellipsoid, and reading the lower line one always finite
outside. Hence V is the potential of a layer of surface density on the ellipsoid »,

4o
Let the surface density, which it is our object to find, be

PP () € (9). p,

a surface harmonic multiplied by the perpendicular on to the tangent plane and by
a quantity p.

and by PoissonN’s equation that density is equal to — L [C% (outside) — f{g (inside):l.

. d D d
Then since - - = 2; -
dn 12 vy,

p= = [ i) - @: () j, B (0)] -

dy
But Q/ (v) = G P (v) -( W3 OF O — L) (F — 2B

Differentiating this logarithmically we find

P = Al (v — 1) (v 2 —

B L a constant,.
=

Hence surface density p ()& (¢). p, where p is constant, gives rise to potential

insid TR 0 , L 1+8 s s s
[fnide o ltipsoia 7% 2 — 1y (o = 242 ([ ([2) e G €20
’ . . (51).
The same investigation holds good with &,(¢), or with P, Q, C, 8 in place of
the corresponding letters above. :
3T 2
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Imagine that the surface of a homogeneous ellipsoid of density p, defined by v,
receives a normal displacement dn, such that

on = p. e () € ().
Then the equivalent surface density is p.ep¥p; (u) &7 (¢), and we can at once write

down the expressions for the internal and external potentials by means of (51).
If «,, vy, 2, be the co-ordinates of a point on the surface, it is clear that the
co-ordinates of the corresponding point on the deformed surface are

e e .

-8
<1 N w%ﬁ () & $))

W@,

s

Hence the equation to the deformed surface is

Keg(y(Jaa:Lif _i-]y(,,@[~ 1) ]cz nw L 207 (p) € i) . (52),

2

. e 2. .
or since B ( - ) + BT + = 1, 1t may be written

(2 = ) s = 26 1) € (4).

If we substitute f'01 lts value from (49), this may be written in the form

— — )k l_ffps% — s s
0 — ) (i — ") (555 )zzquz<,b)@i(¢) N )

T+8
vy (Vo —-1) (Vo =8

This is the equation in elliptic co-ordinates to the deformed surface, but in actual
computation the form involving rectangular co-ordinates might perhaps be more
convenient.

§ 12. The Potential of a homogeneous solid Ellipsoid.

It is well known that the potential of a solid ellipsoid externally is equal to that
of a “focaloid ” shell of the same mass coincident with its external surface.
If p’ be the density of the shell defined by v, and v, + dv, we have

smkip’ [<v02 + 2p0v — —— ) (o + 2v0v — 1)} (v* + 2v,0v)t

2 1 . 1 AL :
- (Voz 1. f__'@> (v — 1) ] = ymhk’p (”o~ - ‘1:‘%} (* — Dy,
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" ’ ]- ]— 1
Therefore P VOSV <V02 - i‘f'g T v —1 + 17(:2> =P
v’ (v — 1) (V S v ' '
or p’vOSV = SR ¢ i +IB oo (53).

Vg =t 1=

If 8n be the thickness of the shell at the poinﬁ where p is the perpendicular on
the tangent plane,

Y
871/ = V()SV .
p

If we multiply both sides of (53) by g, we see that the surface density of the
focaloid shell is

pvy® (v - 1) (V02 - ‘H%) . 7v_°

a4 [ T 5.
57}0 ——1“'03+ I“_«'B ])

p

ko . . .
If therefore we can express 7 in the form of surface harmonics, it will be easy

to write down the external potential of the ellipsoid by means of the formula (51).
Before doing this I will, however, take one other step.
It is easy to see that

o L+ B_f ,  2+BN\N/ .  2—B
O e O Ty ) e T o) RN CO)

where for brevity B = (1 + 38
Now on referring to § 7, (17) and (23), we see that

B -1 : 2(B —1)

P.(v) = Py (v) 68 PR, BP0 = — R Py(v) + Py (v),
where Py =380 — 4%, PR() =3(—1).
If then we put P, (v) = ? + v,
PIO) == =y, o PP(p) =W 4y
it is clear that |
_B=l+ss = Brlog
= QB s 'y = 2,8 3
o = S B=1=8) e e L)
B g 7T g
v - B—2 v —B -2

and

a  3(1—p) 310 —=R8)
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It is obvious then that our expression (54) is equal to — ;3; P, () Po* (v,).  Then

. 3 1 B
since — — = g we have the surface density of the focaloid given by

s s

_(m'f P”o2 (' — 1) (”02 - %g) Zc ?
Pasw ENONE RO <29> ’

wher _]”_2 — ﬁc_z + K e
o P (R T CARRE b o
3 . mff 1/0 5
But since (ot — 1+3) 4 BGI=T) - ]W S = Coo oo . (BB),
21 e "
h — = — =L : .
e have p* v’ + vy (Vog - ';’Ug) T Py (ve* — 1) (56)'

With the object of writing this function in surface harmonics, and besides to
enable us to express a rotation potential in similar form, we have to reduce #?, ¢?, 2*
in the required manner.

I now drop the suffix zero, since we are not concerned with any particular
ellipsoid.
Referring again to §7, (18) and (24), we have

Cy(p) = 1 — £ ; ! cos 2¢, CH(P) =5 + cos 2¢.
If then we put
_20-5 N ESEY
= R 5 :
€ = 2, C———j)‘}_gﬁ,

we may write
Cy(¢) = ecos’d + ¢, €} ($) = e'cos’ ¢ + L',

Let us assume, if' possible,

i (;.gg)—i:f_ Lep) = FRP, (n) €, (<(>) + OGP (w) €7 (¢) + A,

or </u — i—{t g) cos? p = F(au® + 'y) (ecos®* ¢ + {)

+ G (2w + ) (cos®  + () + .
From which it follows that

Fal 4+ Ga'l = 0, Fyl 4+ Gyl + H=0,
Foe + Go'd =1, Fye + Gyé = — ii,
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These equations give

“]:'6151’ G=-—h‘}/ 1
£ i ot

F=
and the condition

L R

ve __1+B—2B ve¢ _1+B8+ B
NOW « g = 1 . B 9 “/ ; 1 — ﬁ b

e —1-38+ B ¢ —1-—-38—-258

¢ 1+ 8 v 1+ B

Since these values satisty the condition amongst the coeﬁici‘ents, the assumed form
for & is justifiable.
I find then

1+ B B-—38 ,_ _1+B B+28 I T
F= =y sa=p C=—="u si-p H="3a-s
‘Whence
E 1+ B8 B—28 L+ B B+28

This 1s the required expression for 4? in surface harmonies.

Next assume

by T () €. () + GBS (W) €2 ($) + H,

If we put . '
<, (¢) = g sin’¢ + {, c,’ ((IS) = ¢'sin*¢ + {';
we have
¢ = 2& =1 [ = DB
| 6 ) 1 - B ]
, , B—-14+3
€ ‘= —_ 2, gl — -—————3—5——-——@;
and

(0 — D)sin*d = Fi(op® + y)(esin* ¢ + §) + Gy(e'w® + {) (¢ sin® b + {)) + H,.

Whence F,, (|, I1, have the same forms as before and the condition to be satisfied
by the coefficients is
7€ ve' € e
=+ o= =0
“gl a gl + §1 §1
It will be found that the condition is satisfied, and that

1 B
PR G =ltE g
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g;(';?y; = _— :FBBQB () €s(9) — Piﬁg(u)@,( )4+ 1L (38).

It follows from (55) that

32 1+ B(B

1 I~ B/B 4+ 28
P 9B 1+ 8 + 1>192(/")@2(¢’) <

B WE ) + 1
. (59).

‘Whence

O e s e S L XL

1+Z;(l o B+ 28

+ 4B 1+ B)iﬁ%(#)@e((b) 4+ 2 — 1. .(60).

This is needed to express the rotation potential fo*(y? + 22).
we have

1+B B+1—5B

B e e Rt XA
—1Lf-3 ST wew = g (6,

This expression will be needed hereafter.

Returning now to the formation of the expression for k¥/p? 1 find

W

3k 1 1+8B »(B+1-38)—(B+1-—
P R —1) (2 — 18 [—- op T )_ B( &) Po(1) C5(4)
1+8 »»B—-14+38)—(B—1+ .
Foup el f.)_ B( &) Po’(n) €3 ()
gt _2 ;1+§]
4 8y iy -+ 3

On considering the forms of the functions 33,(v), I.* (v), it is found that this result
may be written thus :

P BOP@ T+ B T+ BP0 @) | 38 Pl (wE ()
[ on WMo Tur o Proy T ]':I'

P = D — 1) 31~ )
Therefore, writing 0, (u)@,(¢$) for unity, the surface density of the focaloid shell, for
which » = v, is

L+ B Py A& : ,
el M i Mt RME®]. o
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By means of (51), we now at once write down the external potential of the ellipsoid.
It is

V= S e + 0 Gl e + 5o

In this expression M, denotes the mass of the ellipsoid, and the &’s are merely
coeflicients determined approximately in § 10.

In order to find the potential internally, let

— + !/:2 + ,‘c"i;
and, as suggested by the form of (61), let

ry _ 1+ B B+ 1=38 P,
/“" 6 1 -8 P,» )13() :(4)

L+ B B— 1438 WA N
Tp g P, WRET) o =T

Then 1, is a solution of LArnack’s equation throughout the interior of the ellipsoid,
and at the surface, where v = », 1t 18 equal to &* 4+ y* + 2*
Now consider the function

N N _ My L+ B @y 5
V= =m0t =) s e PO €:()

38 @2 ()

o @) BWRIWE(E) + . (64).

QRO (Vo):]

The whole of it, excepting the term in 47, is a solution of LAPLACES equation for
space inside the ellipsoid, and the term in 9 gives v* V= —dmp. Also at the
surface, where v = v, this expression agrees with (63). Hence we have found the
potential of the ellipsoid internally.

The potential at an internal point does not lend itselt to expression in elliptic
co-ordinates, but it may be given another form which is perhaps more convenient.

In our present notation the well-known formula is

9
)

M i o & v
s g [ A A L
V=3 ke [ ( ! /.f’l(v-"l - ifﬂ) LAt — 1) fufzvg)( 2t B) (= 1)

Yo \ B B -

= R = = ) ) = e

integrals may be expressed in terms of the Q-functions, and we have (omitting the

divisors @& and E for brevity)

Sinee P, (v) = 1, P (v) =

aﬁo (v 5Py (v) T QBJ (l’o) /“q L ()

VOlL, CXCVIL-~—A, 3 U

V = v-!<@0(y”) ) By S an(wi") - (63),
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In this we may substitute the expressions for %, ¢, 2% found above,
1t may be worth noting that

Q') Gl | Q) !
P T B + P e = DI =)

Also Pl Q' () + 3@ '(» + P (@ () + P Q(r) = 0.

This last follows from the fact that if «, b, ¢ are the axes of the ellipsoid, and
? du . .
L ABC (proportional to owr @, (») ), ¥ is a homogencous

function of degree — 1 in a, b, ¢, and therefore

if W denotes the function (

A Al A\
= — e

det + );Zb de

=

§ 13, Preparation for the Integration of the square of « surfuce harmonic
over the Ellipsoid.

If it is intended to express any function in harmonics, 1t is necessary to know the
mtegrals over the surface of the ellipsoid of the squares of surface harmonies
multiplied by the perpendicular on the tangent plane.

The surface harmonic has one of the eight forms

e (€0 - S8

and the P-functions are expressible in tevins of the P's where
e 2V /T Nk s .
Py = S (e 1)
\

I shall in this portion of the investigation frequently write p = sin 6, and shall
omit the p or @ or ¢ in the P-, C-, S-tunctions.  Also L may very gencrally omit the
subseripl 7, as elsewhere.

If do denotes the element of surface of the ellipsoid, and

L+ 8 \)*
i B ’

50 that § 7 M is the volume of the ellipsoid, we have, by (50) of § 11,

M o= B (o — 1) (o —

plo M=) (eostf 4,0, -5

200 = (1 — Beos2g) (118 sin?6)*

. Beosig

cos* @ + £ — B2 vV 270,
(1 — Beos 2¢)* (i‘:g — gin? 0)"‘(Vi )* a0,

Then j p(Vi)do = M(1 — B)%“

where the limits of 6 are 47 to — 47, and of ¢ arve 2ur to 0.
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It will be legitimate to develop pdo in powers of sec*d up to any given power,
provided (V)* involves as a factor such a power of cos®d that the whole function to
be integrated does not become infinite at the poles where 6 = 4 1.

I shall at present limit the developments to the square of 8.

We know that P 1s of the same form as 3%, but with the additional factor

Suppose then that

) o o cos? 6 5
Iy + BT, 4 BT, = ()" or LvB int g (P
=g
and let y = 1 — cos 2¢.
) 5?6
Then we put ro="" F /;+ (8 + B ) (M, + B, 4 B1,),
=% sin? 0)“
1+ﬁ . 0
and Fly=1-p S0
anc mg e .

Now suppose that A%, a function independent of @, denotes one of the four

(@J)fl or (&3)9 r (Cs)Q or (Ss)f)
(T = Bcos 2¢)! '

Then in the cases involving J3-functions and P-functions respectively, we have in
alternative form-—

as D . N o ]1' A )
for {}E [p(viyde =M1 = g J({ 7 by,
If it be supposed that the development in powers of sec? 8 is justifiable

I, = cos 0 [l + T )J l, o B') + 4 2 cogt 6‘] [T, + B, + BL,],

cos? 6 cos®

o [ Hy(y — 1 I, @ —-
= Uy cos 6 + B[J—%i——) + 1, cos 0:] +F [ (g():% g : + )(‘(,og.‘a 0 v
(v —

(OS

+ - + T1, cos HJ

And F, has a similar form, save that y 4 1 replaces y — 1, and y — & replaces
5=
Tt is clear that unless TI, is divisible by cos® 8 and 11, by cos 0, [F 10 and fFQdﬁ will

have infinite elements at the poles, and the development is not legitimate.

. s* 0 di+s
Since P"—-;:) T (

divisible increases as s increases.

p® — 1), it follows that the power of cos @ by which P’ is

302
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Let us consider the case of s = 2.
Then
Iy + AU, + B0, = [P? — B P — Bq, ' + B PO
= (P — 2B(qPP* + q,P*PY)
+ B (20, + PV (0P + 20, PP
(or the same with accented ¢'s for the other case).
From this it is clear that I is divisible by cos* € and II, by cos® 8, and the method

of development is legitimate when s = 2, but it is not so when s = 0 and s = 1.
The investigation then separates into the general case, and the cases s = 0, s = 1.

§ 14, Lutegration in the general case.
We have
ag? — Ps —_— BQ& . P — B(]? e Ptz + Bl(] » P _|_ /83(]e o P o .

and

(qgs)z _— (P9)3 — 2,8 (C]q e [)sl) -2 + (] e Pl) e 2) + 2,82 ((13"‘ . Pwpf -4 + (I» L p.«'PQ ER 4.)
+ B P A (e PV A 200 g o PR

[ costd V) o . : o
Also [P (\r"‘g i "Vé)) has the same form with accented ¢’s, so that it will be
LB ) 1
merely necessary to accent the ¢'s to obtain the second case.

We have then

1y = (PR, T, = — 2(q,_o PP 2 4 g, PP3),

Hg 2 (qg—.“ e + Qo PSPS+4) ‘+‘ (([swi Pe- ‘3)2 + ((Is+2 P 2)2
+ 2(1‘\’“‘9,{]&+2PS"2PS+2

I

Then since cos 0df = dpu,

[ o= [y 80T 0 v v

(y — 1)@y NG = (Y
+B.( 11— o +'8{ (1 ) e

('Y - 1) ((]s 7[)51)5 3 —f /Q_P,)I)SJ)\I *)

d
1 ‘“‘M a

Q,BJ

+1 -
_|_ /873 [ [2(]\ . I)x‘l)x — 4

+ 20 PP (g o PO R (g PO A 200 g PO P
. (66).

And [FQCZG has the same form, but with accented ¢’s, and with y -4 1 replacing

y — 1, and y — & replacing § — y.
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It is now necessary to evaluate the several definite integrals involved in this
expression,
It 18 well known that

A

! ¢ B 4 / —I- sY
[(Pawyan = 70

=5
It is easy to see that it is possible to express P*** in the form

Pi+¥ = AP, + BP;, + CP;

i .

where A, B, C . . . do not involve p.
The value of A may be found by considering only the highest power of u on each
side of the identity.

N e (1__ ‘;3).}s+/; o\ 2k )
N()W ]);.‘ + 2% — ,...,,4;{/"7‘;__.‘_' d_ ( I“Q — l)” ,
& \ ,,u,/
24

==y st

L 2!
and Pro= (—)¥ 5 /," . W+

4 — 8!
Therefor — A il L
I'herefore A= (=) ST

Then, since the integral of the prodtu Ctwo P’s of different orders vanishes, we
Tt the integral of the product of two P’s of different ord hes,

have
+1 A 2 i+ s
sPs + 2 J— Vi s A [ _
.(-IPP ' d,u - (—‘) i =5 — 2kt f (P) (’,u, - (—)/ 2 + 1 'i - — 21».
P.s‘l)o 4 2%
We will next consider ’(]:—M dp, where £ is not zero.
The differential equation gives
@ dpe %+ 2 (5 + ‘3/‘>0 b2
(l,u,[_(l_-"l') }—}—%(@—I—])I = 1 = 0,
o (ll
(]:u [( ) o } ( + 1) Pr_ - P\ )

Multiply the first of these by P and the seeond by P*"* and subtract, and we
have

4k (s + k) bsps+ 2 e T, oA LT dpe
L—w b dp ,('l' — ) (l#:] =1 /Z/»I[(J- — W) ]
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Therefore®

4+ 1 "[)JI)&+"/ /l ’ZPJ + 247

Ak (s + 7‘7)‘ - (l/u = (1 — )[P* ek i P d,u J, between limits + 1,
= 0,

Again since by (11)

])\ -+ 2k

1;_‘__ AP\I’/"_*__]%}')*I&/+(Psi’l—-

1t follows that

= dp o= 0, unless k' = 0 or 1.

+1 P.s'ps+"A
j-—l(] — )

P.S‘) ( PJ)7 [)Al)e + 2
= e and
L= (=) (1 —
We have seen in (11) (transformed to accord with our present definition of P*)

that

It remains to find the integrals o

P 1 i+ 1)

5 4 2 9}{2’
1= 4e(e+1)) +‘]’[

s {ZWW_;‘L:;.A 5 - 2
V| pep Bt

Hence

[F2de = i [P+ [0 ] ey

1’ 8} {IL! _: } TsPrs ~ 2
+ S e,
'PA' a 1 1).11)s + 2 + ] Pﬂ 2
fﬁ-fjw(zy =y 1)j dp + [ f;__ 2 1] ( )
1 s! {L R ]‘ J)’l“mf
+° 4s(s — 1) (1 -#2‘“l‘“’
PprvE 1 Ci v 4 ” E’i'_’if_’
. j”(’?;, Ryl Py nf ot [ + ]] i

:‘@, Sj‘ A{rt’ 8§ - l} 1)8“2_P$ +2

T s (s — 1) I LT

The first of these involves integrals already determined ; on introducing them on
. . R : 1 4 !
the right and reducing we find the result to be — . §~i~§, ,
. § Lo 8
The first and last terms of the second integral vanish, and the integral is clearly
p [P+ D L
“ [32-—1 +1 sl a—st
The second and third terms of the third integral vanish, and the whole is clearly
1 P45 4 2!
4s(s+ 1)(s + 2) 4 —s—21°

* T owe this method of finding these last two integrals to Mr, Honson,
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Collecting results we have

[+1 , 2 i+ os
)2 —_
‘ (Pydu =5 T
2 P4 st
s P - 2k — . T
J_XPP dp = (=5 2w
41 1):1)6’ +4 2k
T A =0,
.‘_‘]1 —_ n ®
() 1 04 s
el = R (18]
!_]] -—/J,'zdlll s 4 -8 ( 7)
T (Pey |G+ ]) LA os
Lo St =5 ] 5
"‘ peps 2 I = 1 14+ s+ 2!
(1= @y '”“4s(s+1)(s+2)‘/z:—-s-—2r
[—H 1);1)3-—2 1 v+ s!
(1= oy dp = 45(s — )5 — 2) i —s5!

Then by means of (66) and (67)

[Fao= 2 0 g gy =y
R TR RF o Sy
+Ww—wii¥%+w@—>%%§?+@ié{a
| s R z)sz.i“i’zi;

b e T

i 2 i+ s, 28B4, — o , . .
[#do = 2 [1. e B = = )
)BZS

+(z +s)(%+5-—-1)(¢—Fs——- 7)(0»{—5‘—— ))

+ 28t (i — s)(e — s — 1)(t — s — 2)(1 — s — 3)

+ ) s :82 (1\ - 2) R '
(L—-S+1)(L-——S+‘))(0+ 9)(z+s—~ 1)

B PG+ D s+ 26— (== 1)
o0 (=)t —s — 1y

o B (L YO R R R AL R S | )

! st —
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Also [ Fydf has o similar form with accented ¢’s, v - 1 fory — 1, and y — L for

1553

—— y' .
When we substitute for y its value | — cos 2¢, and write as before
N [(.l**" .}) .

5 -

the last term in _{F;dﬁ becomes

FB. LTI UBE A ) —eos2p[1 — BB = D ... (68)

s i —s!
Also the last term in IFQdO becomes

+ 8. ! ) Z’*_'.ll $211 + B (2 4 V)| — cos2p |1 4+ LB (S 4+ 3)]}. . (68).

s 4 — 8!

But it will appear later that we only need the parts of these terms which involve
cos 2¢ developed as far as the first power of 8; hence in both cases we may write the
latter term inside § } simply as — cos 2¢.

Owr general formulze for the ¢ coefficients apply for all values of s down to s = 3,
inclusive, although the result for s =3 needs proper interpretation. Hence the
present result applies down to s = 3, inclusive.

I have just re-defined =, and 1 remind the reader that

= =D+ DO +2),

&

T

Theu it in (68) we introduce for the ¢'s their values, we find that the coefficient of
the term in B is

25

Ginds— 1y TGl =(—s—1)=—43@E—1).

The coetlicient of the term in 8% is

| _L.{U:t sF DGz DO =3+ )@zt ) | (=== D=y = (=5~ 5)
64 (s =1)(s—2) (s 4+ D(s + 2)

(9@ +s—DE—s+D@—s+2) | @+s+DE+s+ 2@ =90 ~s—1)
+ (s — 1y + | (s 4 1)

oy Do B ],
& — 1)

If this be reduced by a process similar to that employed in § 10, we find
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[Fg = % (1= 183 = 1)+ 4 (3w—cz+6-—s ($2 28 —1) + 273

z_+9

+ B G HBE 4+ 1) —cos 24} . (69).
We know that P? is derivable from 33 by multiplication by 1/C7, and we have
found in (33), § 9,

1

=1 HBE + 1)+ 3B[55 4 8% + 5 4 £% — 7]

Hence multiplying (69) by -—— we have

<(‘ 7

2 1
f@m=y+{igﬂ+—mﬁ+)+#ﬁﬁ—?+2@+42

7+ 5!

(33 — 25 4 1) — 2]} 4 B - ST B 1) — cos2g) . (70),

S

1 have also obtained this result by direct development. It may be thought
surprising that the last term is now the same in both formulee, notwithstanding the
difference in the earlier stages, but if the reader will go through the analysis he will
see how this has been brought about. The formulee (69) and (70) also hold true when
s = 3 (as I have verified), notwithstanding the fact that P? is not to be derived from
P°? by a factor.

The next step is the integration with respect to .

We have
€=t ppa{ie =20+ {06 +20
+ B s = Db i G s+ 0],
Therefore
(€.

L@ = o boos 2 BL(pus 1. o) 0os 2 pywcos2(s = 1)
4 poracos2(s + D] 4+ BE(p o) + H(powe) + (Pema + P
b PaaPure) COS A ok pu o Cos 28 (pumy + B(po2)?) cos 2(s — 2)
 (Povs+ B(pora)?) cos 2(s + 2)].

(©yor (81 '

Also ~ have the same forms with accented p's.
— Bcos 2¢ :

Accordingly, with unaccented p’s, we have to wmultiply this expression by
VOL, CXCVIL~—A, 3 X
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(L — Beos2¢)?, and with accented p’s we multiply by (1 — Bcos 2¢). and we shall
then have the functions denoted above by K=,

The function K? has to be multiplied by a function of the form A + B 8 cos 24,
and integrated from ¢ = 27 to 0. It follows that the only terms in K? which will
not vanish are those independent of ¢ and those in cos 2¢ ;: moreover, the latter terms
are only required as far as the first power of B.

Now (I = Becos2¢p)™ = 1 4 $Bcos2¢ + %67 (I + cos 4¢),
(I —Beos2p) = 1 — SBeos2d — B> (1 + cos 44).

Then omitting terms which will vanish on integration

(€ or 2 . L -
(1 — Beos 2¢) {1+ B L(po-o) + (pore) + 5P+ Spors + 3%

+ B(pies + Pese + %) cos 24,

(Cf or §p)* ) 1.7 o -
(_] ~— B cos 2¢)i = % L4 B H Poce) H (Pere) — 30w — 390 — N I}

+ B(pee + Py — %) cos 24

However, the latter formula is not needed except for verification, beeause it will be

derivable from the former by multiplication by ,_‘1;,,',

Now if we substitute for the p’s their values as given in (27), § 8, we find

(](QEI_EOO;&Q%) =Sl b B R A4S 4 G (3= 22 [} B(X + 1) cos 24

And multiplying by - ( ~~~~~~~~ s L= LB 4 3), or developing divectly

<1(‘(~:‘;EO§B;S“§3$> = 4{1 + a2 = 6+ (3 =22+ DT 1B + 1) cos 24

These represent the K* of our integrals.

Then

oo {5 =0 = {535 v

_ 27M (1 — B) T4 sl e .
=051 ioa e =)

+ B3N — 62 4 6 — (3T 23 — 1) + 27}
X {1+ B3 43 4 6 4 88 — 25 4 )]}

. 1 + 5! . L+<f
. .' (2+1) Bs

(z-{-])]
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_ 2mM i+ s! e LR
= yiaii— (=Rl = *B(‘ - 1)
ol 23 Fas — 1)+ 13
2aeM i+ st -
TR U _; — 18y L ‘\) ot 20N . 3
= i L= B ,8[2 38— s2(28 — 1) 4+ 7]
. (71).
The following results may be obtained either by direct development, or by
T . . 1 - .
multiplication by either or both the factors © and ("'13’*)“ I'he former converts

P into P, the latter @ or & into C or 8.
CiV'yo o 2mM it
K (\ﬁ{s, Jdo =375 /z"::‘s’:{ — 28>
4 LB 25 4 3 — 6— 52(28 — 1) + T]1,
i / s\ 3 _
jmps{g;)da =L L BE 4 2)
| + 5B [11S 4 10 4 *(23° — 25 + 1) — 1]},

[1,<P5{g§>‘”da= o L IBE 4 2)
+ B9% 4 4 (28 — 2% 1) — T} ]

(71).
§ 15, Integration in the case of s = 2.

Although the development in powers of sec® 0 is still legitimate in this case, yet
the formule found in the last section fail because T contains s* — 4 in the denomi-
nator. Moreover since JP* is not convertible into P? by a factor each case must be
considered separately.

We now have ¢,_,=0, ¢',_,=0, and therefore from (68)

2

[#00 = 2 R agf g 26— )]

B2 =2 (=3 G = )G =0+ o 2y

- 2, 2\ ([, y S N o . (’b—" ))(b_:._ }
F@re+ab+0t=a6-u+ “"M‘(L FDE T
it 2! -
b Y §EB(E 4 1) — cos 2.
| Pyl is equal to the same with accented ¢’s, and the last term equal to

Z/3 ~-—-{2+ B(S 4 V) — cos 24},

3 X 2
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‘We now have
gy = — 41,1} {2, 2}, ¢, = &% ¢5 = 555 associated with a cosine function,
Jo= 0 =Y ¢s= 51, associated with a sine function,

It is well to note that these values arve given by the general formula, because this
consideration shows that much of the previous reductions is still applicable.
Ettecting the reductions I find

.( Bl =) " sy U B = ) B = 5 20

+2 (24 DS = D+ 467 "“f{~ﬁ(*~+—1)-Que4¢),

2?
2 i 2!

== oo R ) . N .
=i it /3("*’)+»3 B (198 — 1303 4 80)!
BT LB (R 4 1) — cos 2,
This integral will be associated with @ and G2 and in the present case

S= 44 ).

In the same way

2 L"*‘u;

[.zzgcze:_,.+1 T+ LS 8 = (204 )]+ B [2F8 4PN 4 9
—6(2e+ 1)+ )| + 48 ji—j; $2 - LB 4 9) — cos 242,
:‘;»27%7_?“ (1418 (2 +3)+9,‘,,8(’o + 1863 + 368)!

+ 48 »2 f— 1B(S — 8) — cos 2.

This will be associated with %2 and 87

Now fwrning to the cosine and sine functions, we find that they must be treated
apart, but the integral involving G may be devived trom that in €2 by the factor

’ 1 : . e 9 [ 9 s B | n ‘
Lﬁg(cos)] ; and similarly 87 from &7 by the factor L) (am)] These factors were

evaluated in (36), § 9.
We now have p,_, =0, p,_,=0; also for the sine function p,_, = p, = 0.
Then

(€2 = L + 4 008 4 + BL(2py + pu) vos 2+ p, cos G
+ B(po) + 5(20) 4+ (P + pops) cos 4 + pypy cos i‘/
+ (s + 5( ) cos 8¢,

(87 = § — fcos L + B pycos 2¢ — p, cos 6o |
+ BE(ps) A+ poeos 4 — (pg 4 5(py)7) cos 8¢ ).
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St
o
<t

Then as far as material

(@

(= Beosvgy = S HBLP) 4 2000 +po + b0+ 5513

. + 18(]0.1. + ZZJU '+" g) COS 2(/) 5
(1 —-(?é;o)s 26): =il + B L( pﬁt)r} + dp, + 53§J% -+ B(M + f;) cos 2¢ .

Now po= 5120, po= — 48] and

= L B (198 — 83 22)] 4B (53 1) eos 24

(1 ~—Bcosz¢) 2 64 : = S 8 > 1) cos 2d¢,
(B .

(= Boossgy = FIL T SiBI(E = 83 4 18)) — B (3 — B)cos 24

We now multiply these by ‘F 1df and ﬂﬁgdﬁ respectively, and the last terms dis-

appear as before. T remark that the disappearance of the terms which do not ivolve
the factor 1/(2¢ 4 1) affords an excellent test of the correctness of the laborious
reductions throughout all this part of the work.

Then we have

Jp(if;’!,f“’@f)zdo-::f»f —:@-(1 —B)[1 —4B(S—1)4+55eB(1937— 13034 80)]
X[+ 4B(1957 = 83 4-22)]
2rM £+_ 1 . <9 . , .
-—-_)l:_:_{ / " ‘),L &B\J“Z'S()B (902{V 9821_]—72)} . . . . . (72).
1 we multiply this by [ 5(c os)] or L — %8 (5% 4 7), we obtain the result when

C; replaces @€7; the only change is that the last term mside { } now becomes
+ oF6B (9557 — 1782 — 40),
Again
DM 2 o . N
gig 1 il TBYILA LB )4 Lo B(25% 1863 +-368) |
X[ 144 B (2 82+ 1 s)g]
_ _7rM W42

T4 i >3U+ LB(E42) ke BH (293902 4-216)]. . . . (72).

5 . . | . ° . o _ .
If we multiply this by [:“"_,(sm)] or 1 4 {%8% (£ 4+ 5). we obtain the result
\\'hul S veplaces &7 the only change is that the last term inside 3 now becomes
b b (2932 4 1063 4 136).

lhjs terminates the integrals, which can be uunplbtely determined by this method
of developing in powers of sec’ 0.
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§ 16, Portion of ihe Integration v the case of s = 1.

The preceding method may be used for finding the four mtegraly
[p{{g 1@ =210
, (&) (RSN /\/Eg—sinﬁ(j 7
(Ll]d .{Z){(C/11)2 (P,) ”"<KP[,1 4__{%7;810 > (lﬁ‘

There will then remain four integrals of the type (p (&) (P do to evaluate.

The first pair of our integrals are clearly to be treated by putting 1, = 0,
ooy = Gy = 0, goy = ¢y = 0, and then determining "Fl(l@. The condition for the
second pair only differs in the accentuation of the ¢'s which vanish, and in the use
of AFQCZH.

The vanishing of TI; makes

2 (1, ('y U

=pI1, cos H—I—,B 411, cos (9)

(nl(w)

F,=p11, cos O p° 11, cos (J)

In the first of these
= =20, PTP?, =2, PP () (P7)

and 1 the second the form is the saime with accented ¢'s.

. (s (11,dd
, since |- = du=0 we have | =(.
Also since jl—-/ﬁ dp=0, we have Vowa ="

Hence

|10l — 2, P Pt 2 h‘_<(z;,1“.w+ UARGS R

2 1+['

=il L‘ @y (= 1) (e—=2) 428y (e— 1) (t=2) (1 — 5 ) (v—1)

+ B (g 42) (43) (=D (e—2) ]

and ‘(ngé’ is the same with accented ¢’s.

It s only necessary to pusue the cuses ‘p (&) do and ‘p((!]ﬁ;‘)'ll?f(/a, since the

other par of integrals may be determined by means of multiphcation by the
appropriate factors, determined in § 9,
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ot
Do
~1

Now for 9! &', associated with I,

=10l‘1 1(3'18?:<i+1')]’ _(]5:‘7'2‘;'3?;

and for P, @}, associated with F,,
¢ =% 1+%B 0+ 1)), ¢/ =785
Therefore

[Fid0=7 1 o 8= 1) (=2) 4 BT (= 1) (—=2)(i—=5)(i—4)
| 434 2) (4 3) (= 1) (= 2) = (i = 1) (i=2)i(i+1)] 3,

[rao=52 {4861 =) +oheBTH(— 1) (i=2)((—=3)(i—4)
+ S 2)( )= 1) (=243 = 1) (1 =2)i(i+ 1)1}

In the present case we cannot use ¥ as an abridgement, since it is infinite: T
therefore now write

=i(i+1).

Fffecting the reductions we have
A 2 a1 _— : .
j[ (l9=7—““:]‘ z""{—{gle(j ()?+])+4)+T">§/82|_““‘k,7 ‘;}+.)0—«l6(22+].)]$,

‘ 2 i41! ‘
[Fua0= ;5 TG —22i41)+4)

TT?{,BQ‘_%: 2 1887+|74—]6(2?+1)(7+ a))—}‘

The former of these is associated with %, the latter with @.

In the cosine and sine functions we have

Peo =P =0, Pooy =Py =0, and
(812 = L — Lcos2¢ + B(pycos2d — pycos 4¢)
+ B[ (ps) + picosdd — (p; + & (ps)") cos 66,
(€ = 4 + Yoos 2 + B(pye0s 26 + pycosd)

+ BIH(p) + pycosdd + (s + b (o)) cos 6]

As far as material, we then have

G = M — B+ B b+
+ (= L+ 8 + Bpy)cos 24,
=L = B 4 BL(p) + bps + 1 — (1 — 2Bpy — B) cos 24} ;


http://rsta.royalsocietypublishing.org/

A

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS

A

THE ROYAL £
SOCIETY

PHILOSOPHICAL
TRANSACTIONS

/,

1\

OF

\

4
&/7

OF

Downloaded from rsta.royalsocietypublishing.org

h
Do

8 PROFESSOR . T, DARWIN ON ELLIPSOTDAL HARMONIC ANATLYSIS,

G = AL AR L) bo Al (4 BB+ B eos 24,

= L {1+ 4B+ B bpy 5l 01+ (1 26, 4 1B) cos 23,

Now both for sines and cosines, to the order necessary for our present purpose.
Py = — 1§15 2}, Therefore, introducing j for 7 (7 4 1),

1)2 ) 400 E ; "
(e g = = AR sk =12 68) 114 4~ 18] cos 29

_—
@ . (73).
(=B oos 2gp =21 LHaB+ 5568 (71— 12/ +68)} {1 [ 1 — 4B+ B cos 2 |

Observe that’F]cZH and ( Fodt do not involve cos 2¢, and ave of the first order in 8.

Hence, as far as material for the present portion of the work,

T S PO N CD |
(1—p cos 24))1"‘%(] 1B). (lmﬁoosi?(j))?fwgu'n‘l-:%ﬁ) B ¢

~1
o
—r

Also, to the first order, from (37),

I E | E
[{,} (Sm)] =1+4B, [ '13;(‘—"“»@)_} =1—4p

Therefore as far as necessary

Y A | @y ,
(1--8 cos 2¢): -_i (1 + }B) (1=B cos 2¢)¢ "".% ( [ — fﬂ)

Hence

oM it |

| (80710 = (P dor= 5L (1= (1~48) 118 (=2 (2 1) +1)
b [ = 780 =16 (24 1)) 1

QM ¢+1! . o s e e “
=it esBU ) =75 (164 108)

oM B8 L ()

For §' we have only to replace the factor 1—18 by 1448, and find

ooy 2mM L v e it
[ PSP = (P ldo= "= — B (J+4) =742 —32—84)]
il

FrM m (BB L (T4),
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Again, omitting intermediate steps,

‘[ (€1 [ (P — ( P} ifg“i“i‘_’)z] do

cos? 6

27M -} 1!
——;ﬁq_@ I8 (1) + rlsB (5574 304/4756)}
1!
—aM BB 4] L L L L (T4).
". 1)2[ P1 (PI /\/]i C‘(:S;\euﬁf\)a:}do_
2mM i+1! o .
=it o BB U4+ beB (5574 160/ +180)}
— M_L_tl_r 3 1 2 1 ‘ .
T fB‘l‘,@(.H—)] Co L (T4).

§ 17. Portion of the Integration in the case of s=
We are to find f})“oj) (1)) —(Py)*|do, leaving two integrals of the type

f P (&) (P;)*do to be determined subsequently.
It is only necessary to consider &, since the other case is determinable from it by

as found in (38) of § 9.

e 4 1
multiplication to ik

Following the procedure of the case where s=1, we have
[P0 = —289,[PPdu+28°{[0.PP*+ L (4:)*(P)°] s,
= 311 (2B (i=1) + 280, (i=1) (1=2) (1=3) +8 (P (i+1) (i+2) 1))
Then since qo—4, T=1%

J’Flclﬂ.—-; it 4Bl H1—(2041)] +4B [5°+ 14 +12—4 (204 1) (543)]}.

Now (€)' =1+2Bp, cos 2+ [(2p,+5(p,)?) cos 4b+4 (po)],
and as far as material
(€2

(17 B cos ‘)g;_ﬂ 1+B*[p, +z(p )? '_":H'B( +2p,) cos 2¢,

= {1458 (=4 +6)} {1 =3B (j—1) cos 24}, . . (75),

sinee pe=—Li(i41)=—17.
VOL, OXCVIT.——A S v
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At present we only require this to the first power of 8, and since .F d0 does not

contain cos 2¢, the expression (75) as far as at present needed is simply unity.,
Again, by (38) of § 9,

1 o
(D~ L=
therefore by multiplication

ii—f(gccl(zs ‘)‘}))""(I ‘3“2; ( ”'—6)} {1—‘7),8(7—[> cOS 2(!)) . . . . (76)

This is also unity to the order at present needed.

Hence

[2{{Gr—(Brlto= T M(1—py (6] j+1—(2i+1)
+aB 814+ 12—4 (2041) (+3) 1}
= o7 B+ (57— 4)]
—aM{2B+46 (=1 . . . (77).

§ 18. Preparation for the Integrations when s=1 and 0.

We have now to evaluate the three integrals

=.‘ (&' P do,

, ) P} l-!-,{:?__
.(]0 (QD" co‘%9> <1 B sin® 6) do,

=f20 (€ P) do

M

I

(78),

e

and from these to determine three others when S, C replace &, €.
We have

dfde (1 —=F sin*9)? (1—p8 cos 2¢)*

1+8
P (Zf—sin®0)do_ [ ., { (1—B) <1 BV (1B e gy } {eog 0+ lz) }
dé d¢ -8/ 1+8 (1—pB cos 2¢)

It is the second factor which alone involves ¢, and as I shall now first integrate
with respect to ¢, the first factor may be dropped for the moment, and the second
factor multiplied by the squares of the cosine or sine functions. Since the integration
is from ¢ = 27 to 0, those terms which vanish on integration may be dropped.

pdo __{ﬂf(l B)% Lg tA {00529-}-99{-“—‘;3@}
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For brevity write

Then we have seen in (73) and (75) that

(1—(50501295) =5 (1—EB+8 /) 1 1—[1+3B (j—4)] cos 24},
T g = H BB )T TH L= 48 (j—4)] cos 261,
_(1_%32_5@—(1 +B%o) {1—4B (j—1) cos 24}

Therefore

2
S c0896+5(1 c002¢)

(1—Bcos gw (&) dp=m (1—3B+F)1) {cos® 0+ 3B+1sB" (54 20)},

[ @b (HIBH) (oo O ey, | ¢ (T

[ (@R dp=2m (1B oo 0B (j45)]

Now pick out the parts of pdo and of these integrals (78) which are independent
of 0, and write

F=nM (1—8)} (/1—“@‘)% (I—2B+5)) )
=M {1 =1 B+535 8 (/*—12/+388)},

=M (1-B)(1 5] (1-+48+£%)

(79).
=aM{1+% B+3is B (7 —12/+68)},
H=2+M (1 '8)%<1+B>( +:82.70)
=27M {1—3B4B%(s*"—4/+34)} /
Also write

=§ (149968 +2B),
9:'12‘(1+§,3}+§/3),
h=1+18j+18 o

1—2 . )
K,2=1*-K2=‘1“’;§", so that k=2B+2B°+ ..

3 v 2
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Lastly, in accordance with the usual notation for elliptic integrals, write

1"“ ° B 70 D
Agzl—ﬁjgsnrﬂ.—::lmx'vsm'O S (80).

Then we have

L=TF [ ocos? 044/ (PA)2d0

J A

M:Of (cos® 0-+Bg)a(Piyd0 | . . .. (s1),

N— HJ‘# pof‘l 0+ Bh (P,@)gdﬁ

e A

The next step is to express the squares of the P’s in a series of powers of cos® .

KA

When Pr(u)= G40 <dw

9% 41

)iﬂ(pﬂ——l ), it is known that
P (L= (1 =% o5 )= P, () Py () 425 1~ i) Po(u)cos s

) — s | o s . .
By putting p=p’ we see that 22-.--3 (P#(n))* is the coefficient of cossg in the
+ 8!

expansion of P;(1—(1—p?)2sin’}¢p). By Tavrowr's theorem this last is equal to

XN ¢ . (&
(=) @i iP5 i), p=1).
Now
d Y 1 ((Z Nive . 1 4! . . o
<d,u/ b= 241 (7’“/ (n*—1) = i [14 termsinvolving powers of u?—17,
1 a+4r! ! 1
=_- - - o when u=1,
2l d—p)’ when
Also
V=T kb =1\ 2
RET LA I g {;4,_“ R
sin 2¢-(\ 571 > ,
Loy PE
=3 (=)t A =09 V=1
2 9 9111} :

On putting r—t=s, we see that the coefficient of cos s¢ in sin* 1 is

(=) o

21" gl sl
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Hence we have*

Now suppose

Then clearly

! T4 !

i—s! X rei . ﬁ
2 it (P e )~=2T§s (=) Pyt (PP rts! i—r! cos” 0 . (82).
(Pil)gzé y27'-2 COSQr 9,
1
(]-)i)'.2 ”_:é o, COSQ" 0‘
0
o1 . . . { (82),
, —(__),~+1 200+l i1
72)'_.>— 2:3;‘01-1!(7« !)39._1_1:‘ ’L"-—-T!‘ 7/*1!’
2t il
==Y G i |

" Therefore

The evaluation of these integrals depends on two integrals only, namely, j

r=i

L

ir cos¥+2 @4 Bf cos™ 0
F‘E?’Z”‘g j i A a6,
M—T}::Z u (cos®™ 04 Bg cos™*0) AdS, | 8
G2 g : (83).
1lT:-'-r:iaczr rﬂ B do
G r=0 ~3r A
COSQ"Q dﬂ

x5

and fcosg”ﬁ. Ad#, and these will be considered in the next section.

20
19. Fvaluation of the Integrals cos™f dl and |cos* OAS.
Y A

I will denote these integrals D and E respectively, and I propose to find their
values in series proceeding by powers of k%

The usual notation is adopted where II(x)is such a function that it is equal to
aTl(x — 1) ; accordingly when « is a positive integer I(x) = x!.

Since «? is less than unity

and since

2r~-1

Tt Krein® G

1 3
cos @sin¥ 0df == 22"

n+7r!
2r—1

(n+1)(n+2)...(n+7)r! ’

g i
-
2
cos? @ S

A S
n! o

0|

* Mr. Hossox kindly gave me~this proof when T had shown him the series which I believed to

hold true.
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or, with the usual notation for hypergeometric series,

2n !
= (L L ’ /2
D= ™ ,)zf (3.4 0410 &)

This series is of no service, since it proceeds by powers of k2, which in our case is
nearly unity. Tt is required then to transform the series into one proceeding by
powers of «*.

It 1s known that, if «? 4+ «* =

M(e—a=b=DIT(e=1) .
Mo 1) 1T oty L (@ s Tkatb—c, <)

T (a4 b—e—1) TT(e—
(a—1)1 (h—1)

F(a, b, ¢, k)=

I 1)F(¢—~a =0, c—=a—b+41, k*).¥

If we apply this theorem with @ =0=1%, ¢=mn+ 1, the first # becomes
I'(%, %, 1 —n,«%, whose nth and all subsequent terms involve zero factors in the
denominators. Also the coefficient of the second F' involves II( — n — 1), which
has an infinite factor. Hence the formula leads to an indeterminate result. Let us
therefore put ¢ = n 4 1 4 ¢, and proceed to the limit when e = 0.

We have then

Lo 2n
D=TLimit # 5 (1) {

IT (n—14¢) Il (n+e) . -
[T (n—~%+e)P F(, L 1—n—e «°)

1I —1—¢) I (n+e .
gt | (= %[H(__f}j)]ﬂ (nt )F(n—i——%-l-e, n+§-4e n41-+e, Kz)}.

Now 1(@=1+em (o), 1 (~bra=1(—} (145 D)

Therefore, when e is very small,

T (n—1+e ! 1 \ )
‘hﬁ%;l_:;g”):l-%- <":T+ ot +%+1>+e 11’ (0)

—1-e <II' (0)+;§, tl ml)

1

1T (n+ )
oy =l <H (0) +§{/
H(n—%+e) /1 1 (-1

Ha—p =iF2els st FiEdegr oy
(G \
=14 (\n(— )+ 2% i)

* 1 have to thank Mr. Horsox for giving me this formula, and for showing me the procedure wherehy
it can be made effective,
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Hence for the coefficient of the first series we have

IT (n—1+¢) T (n+e) T (a—1)TI(n) . 11 T (=p L1
ot or = Ty {1t (0227 = =217y 4%%’—“1)}'
But 1 (—%)=n, ' (0) — ?I((_ f)) =log, 4.*

[T (n—3)P=mn (Q%tnn ;> , () (n—1)=n!n—1"
Therefore

2n! (=14 T (n4e) o nin—1! L no1
TS (L—bteof 2 2 {'"e(MO = +22 257:1>}

This 1s true from n=00 to 1, but in the case of n=0 we have
. 1 1 ,
11 (—1+e)=~II (e):::~+ 1’ (0),

so that in that case T %ZE%{I;](G) t—l—‘) log 4.

Now consider the coefficient of the second series.

We have K=k (14 2¢ log, ),
and since T
H(—x)n<w—1) Sln'n'c

H(—n—1—¢) Il (n+e)= i = Wlm [IL(—%) =

sin (7L+1+e)7r €

- . .. 2t g
Therefore the coeflicient of the second series is (—) "' - on (';% Ve ~ - (14 2¢ log ), and

2%t —

D=""N [1 +e (2 log 4-——" +2 2 42 v ﬂ F (Y, 4 1—n—e «)

2n! o —
u In! on 1 . 9
H(= )y < (L+2elog ) F(nthte ndbte ntl+e o).

The case of n=0 is an exception, for the coefticient of the first /' has the part
inside [ ] replaced by 1 (1+42¢ log 4). .

* Proved by differentiating the known formula II (w~-1) Il(w—4)=1I 2z~1). (h? , and putting
€=4.

Z2
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Tt remaing to consider these two F series.

[1.3...@2r—-1D)P >
l—n—-e)(‘)——ﬂ—-e) (7—77—e) 7!

F L 1—n—e k)= 2‘) (

"l . [1.3... =P
--Z (=) Prn—1+4e€)(n—24+¢)...(n—r+e)r!

v L3 @ =1 e 7
+(=) Z"’(”ml-i-t?) (1 +e)e(l—e).. (r—n—e).7!
When »<n
1 1 n- 11
(n—1+¢e)(n—2+¢) ...”(n—7’+e) = (n—1)(n-~-2) (77—9)( —e3 >

g

When »>n, put r=n+s, and

1 1 1 "1 ‘1 €
(n—1+e)(n—2+e)...(1+e)e(l—e)...(s—e)  n—1is!’ e'[l“‘elzz{ + 52; . T af]‘

Also when r==n-s

W13 2=DF _ 2nl)®  [@u+))@n45) .. Gng2=DR

o Xt T om(ply x 2% (n4+1)(n+2)... (n+s)
Thus
o4 2 — T’:)L‘I 7 [1 (2/ —“'1)J : " 1
F(% 4 1—n—e¢, k) = E; (—) w(n—l) .(n 1)7'(]"5”; )
L, Cnl)? 2 J[(2n41)... 2n4- 25— D] 1 o1
+(=) 24"(n')‘*2 ; 22541y, (n+s)s: <1—62 + +€2 )

It follows that we may write the first term of D as follows :—

2nl k™ e B ! 1 2r—1)]?
(— )n22"<m) - (a4, n4-d n4-1, € 4 - ot Efg,gn[_ﬂ) E“ 7)1)}]

2n i LEn+1) L e+ 2s—=DPF [ L1 " 1 .
+(_ 2% (n )" 2 2%(n+1)... (n-+s).s! [Z + 2 225_1 +2 10g 4:|K‘

0

The first of these terms becomes infinite when e=0.
Turning to the second F we have

[204 14 2€) (2n+3+26) ... 20+ 2—1420)]
22(n+1+e)(n+2+e) ... (n+ste).s!

F(ntd4entite ntlie )=

0

_L[@Cr+D) Ca+3) .. 2e+2s—DP [ v ’“° 1
=3 225(n41)(n+2) ... (n4s). 5! L e o ]
- ES d ‘e < R ”F‘ — n+ J
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o
~J

Thus the second term of D is

w41 on ! ! 2y

(=) S} < f—~F('n+z, n+% n+1, )

2n ! [(2n+1)... 20+ 2s—DP [ "<& ol ]
I N5 2 A ) ~4+210 2
+( ) 2% (q 1y 024 2%(n+1)...(n+8)s! [415126—1 i t + gK| K

The first term of this becomes infinite when e = 0, but it is equal and opposite to
the infinite term in the first part of D, and they annihilate one another,

Hence.

oz LS =Y (L3 @r= D,
o 20! X 24 (p—1)...(n—1)i

w20 ey [k (Zrt 25— D o e
+i- )‘m(”’) §[ 2% (4 1)...(n+5).s! [ log - +2 +2« 2_“"]

On examining the case of n =0 we find that this formula also embraces it,
0

provided we interpret 3 as meaning zero.
1

~ The coefficient in the last term admits of some simplification, for
n+ 1 a8 kg ]
— 3 )
3 HE a3yl = 3

We thus conclude that D or

1

LEa
T anedi DRI — 2 12,32
cos™0 28t -1 1 . 1.8 ) .
S = [1 - K kt— .. to n terms

A 2/»1! 2(n—1)1 e + 2 —1)(n-—2)2!
4 il 1 ,) -1 \)

20t o;,r ‘,: e N [
+( ) )’”Z-.'—).. l_ <\3 ]0{2’ K z t ) /()t

2n+1) 4 ""*;}»1_1_ s
+‘)“(f)7+1)1'<210"’/c zzt 25,1»(21“,1))"

Can+1yCa+3 3( ‘__”21___ "ZM_ _______ ~ p .
TS me a2 O 2 ‘2 i et | (84),

The second integral E may be found as follows :—
fa) ) /6
E”:‘(cosg" 6 Adb :fcosg” O[>+ (1 —~k") cos® 0] [A ,

=*D,4+(1—=) D,y . . . . . . . . (8D)
YOI, OXCVIL—A, 3 7
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From this I find F or

22T () 2 g 1 ”2’,( (27—1) @r+1)
2n+1! 2n 411! ’" (n— 1)(72--— (n—z) +1 K

2t

J " cos¥ 0. Adf=

L (= )’L 20t 9”3, (2n+1) 2043y ... 20+ 25—3)° 2n+ 25—1)
Tomay, Ty, +1 L K 2572 (g 4-2) (n4-3) .. (R+8). s~ 1!

w3 1 ERRiad 1 2
—4 — e
[ 0g - +2 +E 21' 2% =1 271+25‘-1]K ‘

el
This 18 applicable also to the case of n = 0, provided that 3 is interpreted as zero,

0
In the particular case in hand 1 find, however, that it is shorter not to use this
general formula, but to carry out the transformation (85) in the particular cases

where the result is needed.

§ 20. Reduction of preceding integrals ; disappearance of logarithmic terms,

In the application of the integrals of the last section, we are to put «* =1 — %-E"Z
and only to develop as far as 8% ’
Then to the proposed order «* = 2B(1 — B), «* == 4~

. 4, 8 8 .
Also 2 log ;..—_-log E-}-log (14-B)=log Z}-i-ﬁ"?}eﬁ" :

It will now facilitate future developments to adopt an abridged notation, [ write
then
2% g -1

ZN

f
5 +1j( n), and f(1) =2, f(2) =
Since «? is of the fivst order in B, only the first series in the D mtogral (84) enters
when n is greater than 2. In that case

and observe that f(n 4 1) =

o 98
D=/ ) 1= e

|1 B GntDE
mf(n)[J'WZ(ﬂ,me)’*_S(n—l)(71,--—-2)_" oo (86>‘

This result may be obtained very shortly without reference to the general formula ;
for when n is greater than 2

/] +B> ‘( cos? @ do

8) ) . (cos® (5121?12/3) :

L e
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The integral of an odd power of cos 0 is easily determined, and it will be found that
the result (86) is obtained. It is, however, clear that if # is not greater than 2 the
development in powers of sec? @ is not legitimate.

When # is not greater than 2 the formula (84) of the last section is necessary, and

we find
[ ap=" 1o +j'(z)[|.—g/3-;ié
j‘:ﬁ‘fcw... —(B+ B)loo~+j(*)[l+ B+166] Lo (8),
[ —eniprve-ie

We have now to find the second integral E, and this may be done more casily than
Ly reference to the general formula of the last section.

‘We have
E= cos™ fadf= (l—K)j‘—"i*i—fJ’ a0 0 b,

cos™ 6

0 19428 (1—B B) [<5 de.

cos

=(1-—26+2/3')f

1t will be observed that even when » is 2 the general formula (86) gives the
D integral as far as the first power of B. Hence in finding £ we may use that
general formula except when % =0, L.

241 .
Then since f (n)= ~l-l j_ — f(n+1), when n is greater than I,

| E=f’<n+1>[(1—25+2ﬁ2) (1= QDB 2t g (1 (1=, 2]
,._/(,¢+[)[1+§; bff’é';b_lf),e] S €153
But when w=1,
B (128428 1B log Ty =28 (1=B). B(L+3B) log 5
S/ (2) [(1~2B+28) (1 — 1B —$48%) +38(1—B) (1+8)].
R L LR R DU ()

And when n=0,
B=—(1—28+28")B(1+38) log% +2B(1—p) (1+3B) log ;
+/ ()1 —28428) (1 +IB+1§R) =28 (1—RB) . 1687,
=B('~-%B)10g§+f(?'-)[1--:5-B+'1%B*J. L (90)

3 7 2
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I now wish to show that, in the use to which these integrals are to be put, the
logarthmic terms disappear.

The following is a table of these integrals collected from (87), (89), (90), in as far
only as they involve logarithms :—

19 s
[ = (BB Tog . [AO=B(1—1B) log .

i u"”@ S [ , 3
jq—% = —B(1+43B)log R jcosf' 0A df0=—LB" log f; )
cos' @
J ~~~~~~ di=4p* log g

Then the formule (83) for L, M, N, in so far only as is at present material, ave

j(: H%’ (cos' 0+ Bf cos® 0)+ ({S Bf cos* 9] 0.

SE

J:[L‘YOA (cos® 0+Bg) 47y, ABg cos® §] db.

i

r—f:”}‘i (cos® 0+,8h)+-—z-' (cos" O+ Bh cos* ())+ $Bh cost ]rl(i

On using the integrals and only retaining squares of B8, we find
f"—ﬁ v (3=/) 10“
Moo s
G =B (y—b) log 4.
N _¢ 5 1A @Y 1 G2, (4 8
1= By [—(1448)+h (1+48) |+-Bay(§—~h)} flog .

But by definition of f and ¢ in (80) and of the e's in (82), to the order zero of
small quantities,
= g=h =B, m= 1, wm (1) =~ )

" ; o . - : ,
Fhus the logarithmic terms entirely disappear, and henceforth may be dropped.
Thus, as fur as material, we have the following table of integrals :—
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(/(9__ ]blB 5 .wS 9 w_.f( >1]+;:8+1'(;

cost @

( d0=f(2)[1 18— 46"}

f%gs_fﬁ Jo— f(n)L _ B st Gt 1) ] w2,
§

£

2(n— S(n—1)(n—2)|’
Adg=f(1)[1 —3B++68°]

cos® 0AdO=f(2)[ 1+ 5B+ 18|

‘cog " HALO=f(n+1) [1—{— % g’:;b(n l)ﬁ} w>1

Before using these for the determination of L, M, N, it is well to obtain one other
result,
We have seen in (82) that

{48! 2!

(Py= (‘:6*2( =) e
- . [+1 % + 8! . , 20t
1 herefore j » ( P ) LJ}L = ( " " f (’}"+ ].)3 2,)2+ SA"Z;"')QJ—-A , .

2
ut this integral is equal to il iz f—_}-b wE therefore

2! 2

7hs : —
( AAC +J)Z~’;+s!(7’!)2'r--5!_—Zi—!-l'

= M

Putting s=1 and 0, and comparing with the values of a,,, y,,_, in (82), we have
. 2 ‘
Sonf(rd1) = o
S LTAG Syl 1

92).
2 il (
Yoo S (A ) =50 T J |

§ 21, Integrols of the squares of harmonics when s = 1 und s = 0.
In (83) we have

i(‘ 2! "'f'i"(cos.*'“’2 0+ Bf cos™ 6) .
A 1 i

21-1-]

Theretore, noting that f()= PG 1), and using the integrals (Y1),

L a1 B s ekl g B
=Y ("H)[["'zf" 8r(r—1) +,7A (\” 2(7*««1))/ }
S = EB—156 458 (1 +58) /]
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Substituting for f (which the reader must not confuse with the functional / in use

here) its value (80), the term of order zero is 4,-)/,, o (r+1). By (92) this is equal
2 1!

RS R

The term of the fivst order in B is

)(“'+D)+/3M./\7)( LR ),

B2y (1) (=5

which may be reduced to the form
A N ) L N 2 1!
B3 f )+ o (), and s equal to ;% g%y ()

The term of the second order in B is

dr4b | B2+ 1)/ 1 o
,322,)/2 AY +})[?7Z7 ] + : 4y >("~)(/._ +Lil:.€.7+§‘>]

+B,/(2) [ = H+ ()]

This may be reduced to the form

8| By )5 (12 3 (= .

. . ) . v 2 g1t
2y o NS < _l. 2 0 e
of which the first term is 38 it i
',Fheref()re
411 Vr ;
(J.+B"‘|"’"BZ)2®+1 @m1v+318[1+ 18(J+13)]~f’)/,,~0 f(T)w?%BZVO'
. 1411 ) 4!
Now Yoo JO) = (=) T i
(— )Hl it (D@D i)
and ?;H e T 5193 T

=1 = (i1, —i, 2, 1),
1t 1s known that
De—1)I(e—a—b-—1)%

e, b, e, U“n«_umn]l(««ip 3 (93)
Then since 1I(~—¢) contains an infinite factor
e )Ty
g —0 2, )= -
a1, —i,2, 1)= T TG+ 1) ),
. 1 ,
therefore ._,72,»2 J(r)y= ﬁér. Co e e (93)

* I have again to thank Mr, Hopsox for this formula, which is due to Gauss.
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1!
Also y0_~z3(z+1}2_47 i+l 11

IJ 2 L+1’ L*“]

Hence Faig 1 (LEBHEAY) +48 1 (1+2R).

Introducing the value of F as defined in (79), we have L or

27 M L+ ] [

J’p(ﬁzl[)zl)qu 2%+ 1"

— 3B+ 3558 ()— 125+ 68)]

+7TM @+1

T B8 —4B% L

We have in (74) obtained jp(e%,-l)ﬂ[(iiaﬂ)ﬂ'——(Pi‘-)-g]do-, and if it be added .to our last

result we see that the term which does not involve the factor 1/(2i41) is annihilated,

and

[pBAS ) do= 375 T (1B —2)+ shaf(—26/+48)] . . (94).

Now from (37) the square of the factor for converting &! into 8' is

[])1(s1n):l2—-] +5B4++558*(7—8).
Therefore
20M 4 . .
fp(iBlsl) do—%_ﬁ @}1 [1+s:3(7+3)+';‘s7r 2(]2'}‘197'-96)] . (94).

These are two of the required integrals.

Next we have from (83)

M .
4(;:2 {73,,“2 (cos® 04 By cos¥ > B) Ad#.

1

Noting as before that /(s )~~;~— J(r41), and using the integrals (91),

i Ar—-1)B*  2r+41 /. g
? 2/ (r+1) [1+o, 8(7»—-;.)7«"' o ’69(\1‘"*“5('%1))}

‘
T

0/ @) |18+ 189 (1-18) |

Substituting for ¢ its value from (80), T find the term of order zero to be

2 @—{-11
27’3'~2f(’"+1) o 1=

i 1 ul 1
The term of the first order is 8 o, f(r+1) [57—4 + ]—l— Byo S (2) (F+%).
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This may be reduced to the form—g é'y‘_,,,._‘_)‘ f(r41)43 ‘_,—y, 2/ (1) which by (92)
1

28 Q41! i+1!
o C L PR
and (93) becomes — Gl i ,—I— 38 et

The term of.the second order 1

(dr—1) 241/ 1 S N o
B pne b 0) [ = T ) B (@) )

This is reducible to

1B* 2;‘,7/, o (1) 45587 (J—4) %ygi._(_,v /()44 B, which becomes

Do 2 (1 S L+]’ ,7,+l'
B 2t :_i.““ W B (,/ ~— 4 ) E + i /8 1

Therefore

M2 i+l
(w ‘)1+-1 L -( B+OB)

l

B (= 1)1

[ntroducing for G its value (79), we find M or

7 P\ /148 2 M i1
’ i [)<@,1 m) < “‘,8 sm 0)(]0‘ i;l—_{-_‘ (’,“1!_{|—~}LB+5,—6 (] -—-1)/+4)J

M- L \

fmM it ~.LB+SB (2/+7) 1.

3ut in (74) we have (p((’lﬂ)'“ [( P;')"w(P;" /\/1 B M; 0> } do. 1f this be added to
y cos*@
the result just found the term which has not 1/(2/41) as a factor is annihilated, and

20M 141

[ (PR o = [T B (3 10) o (20124 384) | (09),

L1
v ol

Now from (37) the square of the factor for converting @' into GV is

l‘%-] (COS>T =1—3B8+548(/ —8).

Therefore

b 2mM i |
Lr( MG do= +11.[1+‘B(7+2>+,MB?<297+/4/+48)\ . (95).

These last two complete the solution for s=1.
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<

Next we have from (83)

N
H

H

s f " (s 04 Bh cus® 6) 0.

0

Proceeding as before,
N Lo s B drgd 2rp-1 -
I'-”IV"%OLZ"/(7 +1) [1“"; +s )—»«1\’8 g B <1m7‘7“:“ \]

af (2)[1=3B— 56+ B0 (1426)]
a0/ (1) [ 1+ 3B+ 158l (— ).

pubstituting for & its value (80), we find that the term of order zero is S, S (1),
- 0

and by (92) this 1s equal to TRRT
The term of the first order is
/ . ‘ 2r41 ,
B f (1) | =y A5 | 4Bt 8,

which may be written in the form

e
G B

,BEazr S(r+41)4Bay, and is equal to

The term of the second order is

4r+5 2r+1 2r+1
B (41) | 510 i e ) [ (= )+ B,

which 1s equal to

»‘B~ %o {E:H)-luﬁ (J+3)2ao S0) By (3 —1%) +5* B

Rov ;{EZH)—M( )=+ S0,

Hence the term may be written

VB (1) F 4B St o 1) 4B S () By () )+ B

But | o f (1) =(=) (7 D »iH
rtl ! Lt
And j?—_* tppe (1 1)==(=) = (7”+l_5_‘ [i(i4+1)—r (7+1)] +
— =y 7 () i
"[ G Ty ></+1>L_,

VOL., CXCVIL.—A., 4 A
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In the preceding formula the sum of this last function had limits t—1 to 1, but as
we now see that it vanishes when =1, the upper limit may be changed to <.
1t follows that the terms of the second order are

LS )= e 2)= 1 /(1)

: (=) J I Gt N LS W S Cd
+if? E[ (rr " (1P ()1 Lw1*§+4'8'7§7‘(7“!)9 P
1B f (1) B = ) 28
The term in a, in this expression will be found to be —ga, That in «, will he
found to be %te,  Then since ay=—%7j, a,=1, these terms are together {857+ 11).
The whole may then be written

1 .y;,‘ .y . ‘ {—/ (=)
W3 ()G H)3 O e L e ),
Now
\’" (=) ! (41 G+ E4+2)i@—1) R PR ; :
’?ru«+1w~«,~z=“ st aray e =L = 2 )=
Sy D) G4 )
(1+1) i—rl 212! 313!
e z‘(z’+1><-fa—1><—ﬂi>+e<z+1><z+z>(~—z—-1>c-o<w+1)
(1) 21 1.2 511.9.0 T
1 ; 1) 1
[’(T_—F—TS{Z(L»—L L 1) J+z(¢+l)
1 1
Fl,—i—1,1, 1)+~ —1
Jf(z i )+,7
—_ l-—-l.
J

The last result follows from the fact that in accordance with (98) the sum of the
hypergeometric series has an infinite factor in the denominator, and vanishes.

i 9 ‘ )
Then since by (92) 3 ay, f(r+1)= 2{; X the terms of the second order are found to be
0
1B BB
Henge, collecting terms,
N ) 2 Qg
a=(AB+2BY) 5 HB4sB (+11).
Substituting for H its value (79), we have N or
4 M

[ p @Dy do=) [1=1B+sB (= 4+ 2]+ 20M [B+L 8 (= 1)}
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But we have already found in (77) the value of J( P (&) [(P:)°— (P)?] do, and on

adding it to the last result the term independent of 1/(2¢41) disappears, and we
have

47 M

rio(iﬁa C)do= 7?1'[ +387 +5s B (7 —10)] . . . . (96).

The square of the factor whereby &; is converted into C; was found in (38),
namely,

@")"““1-}- 82 (j—3).
Hence !.;P (P, Ci)* do= jﬁ\ﬁ [(L+387 4+ B (77 =2 —24)] . . . (96).

These are the last of the required integrals.

§ 22, Tuble of Integrals of squares of harmonics.™

In this section the results obtained in (71), (72), (94), (95), and (96) arve
collected.

* After having completed the evaluation of all these integrals, I found that they may he evaluated
very shortly by means of the factors @ and E of (48), § 10.

I find that for «ll values of s (writing the eight forms in a single formula),

@:9)*  (€:%)? or (C;%)? drM o oy [ @S { ‘. (&% or Cifor &% or Si“’)'z}
j (Pi)2 ™ ($:%)2 or ()2 o TyF1 (=) g const. part of (1 =P8 cos 2¢)*

I'leave the reader to verify that this is so.

Unfortunately I have hitherto been unable to prove the truth of this except by the laborious method
in the text. I do not therefore know whether the result remains true for higher degrees of approxima-
tion, although I suspect it does so. If it should be true, it would be very easy to compute the integrals
when higher powers of 8 are included.

It may he worth mentioning that the variables are separable in the integrals. 'Thus, when ;¢ &.*
denotes any one of the eight forms,

[ 1

o )2 do
\I(l /3) J r Hgis@'i”]zlltr:‘\ GB ) «

T /3{ ------------- f (1 - cos 2¢) (€%)2 dep
- \JI-B j " SJE_@@EL 10 j (&)
T+ o (1 =P cos "(/))
The ¢ integrals present no difficulty, but with regard to the others we are met by the impossibility of

expanding in powers of sec® § for the lower orders. It would he a great step in the right divection, if it

could be proved that all the terms which do not involve the factor -‘)-%:1 necessarily vanish,

&

4 A 2
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It may be well to remind the reader that M=% (»*—1) ( v —%{-g)
(i)
i=
(z-—~1)z (t+1) (7+‘))
5% g
J=i (1)

First when s > 2.

EEC 4 .
Types { 008 [P (\35:‘ (1) {gs(ff’)) do
‘)'n-M 'L+ s
2@—}— 14—

Types {qug fp (3}3;8(# {C{ >2d0‘

271"\4 45!
9L+11 s!

m 00C N AN
l.YPeS{EES ( (P'(M){gs(¢))d”

27 M 1
9@+[@+§1 43B(E42) 4B 113+ 10462287 =25+ 1) =T},

Types {g%g [,ZJ(P*S(I‘«) { i(‘i’))gd"

= (1 3B(32) BTN A (28— 23 )T

{1=3B24+B 2832 — 6 —s* (25 —1)4T]}.

Secondly, when s=2, S=47 (4 1).

Type BRC [ p (@30 €2()Vdo= —YTM?%-;U LBl (95— 984 T2)3.

24171
m | 2 2 2 2mM 7_i2' - L 1 OGnRs? ' ; )
lype OBC [ p @2(2)CH@) do=, - ) 11 = 4BS k(9058 = 1788 —40).,
Type EES  [p (P#(u) $%(¢))do
97TM 42! . oax .
=5 -”———5»-, (1418 (3+42) 4512829524905 4216) .
Type OES  [p (P#(u) 8F(¢))do

=?.IM ”“_:‘:Z' (418 (5+2)++is 13(>92’+10(‘2+H(‘)1.

Type 008 [ p () 82)Pdo =" TH1 18 (=2) 4B =261H48)].
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Type BOS [ p (8/(2) SHP) do=37 1 7, {148 (+2)+sbaB 2+ 10/ = 90) .

Type 00C [ p(Pi) €X())* do

2'71'1\1 741!

=5t o1t B (Y H10)+ 5297+ 1344 384) .
27 M 1t vy .

Type BOC ( (PN u)CH$))? cla—z%i f’+ 1+ EB(+2)+ 5828297+ T4+ 48) .

Lastly, when s=0; S=—i(i+1)==—j. There are only two types—

Type BEC [ p (@i () €:(9)) do=5r5 [1+ 581+ (17— 10))].

Type ORC [ (k) Ci(9)) do=45 [1+6j+ 4B (77— 2/ —24].
PART TIII.
SUMMARY,

The symmetrical form in which Lami presented the three functions whose product
is a solid ellipsoidal harmonic is such as to render purely analytical investigations
both elegant and convenient. But it seemed to me that facility for computation
might be gained by the surrender of symmetry, and I have acted on this idea in the
preceding paper.

Spheroidal analysis has been successfully employed where the ellipsoid is one of
revolution, and it therefore seemed advisable to make that method the point of
departure for the treatment of ellipsoids with three unequal axes. In spheroidal
harmonics we start with a fundamental prolate ellipsoid of revolution, with imaginary
semi-axes ky/—1, k\/—1,0. The position of a point is then defined by three co-ordi-
nates; the first of these, », is such that its reciprocal is the eccentricity of a meridional
section of an ellipsoid confocal with the fundamental ellipsoid and passing through
the point. Since that eccentricity diminishes as we recede from the origin, » plays
the part of a reciprocal to the radius vector. The second co-ordinate, p, is the cosine
of the auxiliary angle in the meridional ellipse measured from the axis of symmetry.
It therefore plays the part of sine of latitude. The third co-ordinate is simply the
longitude ¢. The three co-ordinates may then be described as the radial, latitudinal,
and longitudinal co-ordinates. The parameter k defines the absolute scale on which
the figure is drawn.

It is equally possible to start with a fundamental oblate ellipsoid with real axes
kyk, 0. We should then take the first co-ordinate, {, as such that @ = — »% All
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that follows would then be equally applicable ; but, in order not to complicate the
statement by continual reference to alternative forms, I shall adhere to the first
form as a standard.

In this paper a closely parallel notation is adopted for the ellipsoid of three
unequal axes. The squares of semi-axes of the fundamental ellipsoid are taken to

be — k* ?-l—g k2,0, and the three co-ordinates are still », u, ¢.  Although their

geometrical meanings are now by no means so simple, they may still be described as
radial, latitudinal, and longitudinal co-ordinates. Asbefore, we might equally well

'Z, k%, 0, and
replace »* by {7, where {* = — »% All possible ellipsoids are comprised in either of
these types by making 8 vary from zero to infinity. But it is shown in § 2 that, by
a proper choice of type, all possible ellipsoids are comprised in a range of B8 from zero
to one-third. When B is zero we have the spheroids for which harmonic analysis
already exists; and when B =4 the ellipsoid is such that the mean axis is
the square root of mean square of the extreme axes. The harmonic analysis for this
class of ellipsoid has not been yet worked out, but the method of this paper would
render it possible to do so. We may then regard 8 as essentially less than %, and

1+
start with a fundamental ellipsoid whose squares of semi-axes are 7“ —

may conveniently make developments in powers of .

In spheroidal analysis, for space internal to an ellipsoid v, two of the three func-
tions are the same P-functions that occur in spherical analysis; one P being a
function of », the other of u. The third function is a cosine or sine of a multiple of
the longitude ¢. In external space the P-function of » is replaced by a Q-function,
being a solution of the differential equation of the second kind.

The like is true in ellipsoidal analysis, and we have P-and Q-functions of » for
internal and external space, a P-function of u, and a cosine- or sine-function of ¢. T
will now for a time set aside the Q-functions and consider them later.

There are eight cases to consider (§ 4) ; these are determined by the evenness or
oddness of the degree 7 and of the order s of the harmonic, and by the alternative of
whether they correspond with a cosine- or sine-function of ¢. I indicate these eight
types by the initials E, O, C, or S—for example, EOS means the type in which 7 is
even, s 1s odd, and that there is association with a sine-function.

It appears that the new P-functions fall into two forms. The first form, which I
write 37, is found to be expressible in a finite series in terms of the P; **, where the
P’s are the ordinary functions of spherical analysis. The terms in this series are
arranged in powers of B, so that the coefficient of P:** has B as part of its

V21

coefficient. The second form, which 1 write P}, is such that /\/ -—~1—+;g P:(v) o

]__ P
/\/ 1+,; e ;P (r) is expressible by a series of the same kind as that for P

A.m(mgst the eight types four involve P-functions and four P-functions ; and if for
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given s a P -function is associated with a cosine-function, the corresponding P; is
associated with a sine-function, and vice versd.

Lastly, a P-function of » is always associated with a 33-function of u; and the like
is true of the P’s.

Again, the cosine- and sine-functions fall into two forms. 1In the first form s and 2
are either both even or both odd, and the function, which I write &; or &, 1s
expressed by a series of terms consisting of a coeflicient multiplied by B* cos or
sin (s 4 2k)$.  In the second form s and ¢ differ as to evenness and oddness, and the
function, written C; or 87, is expressed by a similar series multiplied by
(1 — B cos 2¢)-

The combination of the two forms of P-function with the four forms of cosine- and
sine-function gives the eight types of solid harmonie.

Corresponding to the two forms of P-function there are two forms of Q-function,

such that @F and Q; /\/ e H; are expansible in a series of ordinary Q-functions ;

but whereas the series for E{jai d;lld P; are terminable, because P vanishes when s is
greater than 7, this is not the case with the Q-functions. In fact the series for the
Q-functions beging with Q; or Q/, and the order of the Q’s increases by two at a time
up to s when we have the principal or central term ; it then goes on increasing up to
s =1z or¢— 1, and on to infinity.

In spherical and spheroidal analysis the differential equation satlsﬁed by P;
involves the integer s, whereby the order is specified. So here also the differential
equations, satisfied by 39/ or P; and by @;, &;, or C/, 8§, involve a constant, but it
is no longer an integer. It seemed convenient to assume s’—QBo¢ as the form for
this constant, where s1s the known integer specifying the order of harmonie, and
o remains to be determined from the differential equations.

When the assumed forms for the P-function and for the cosine- and sine-functions
are substituted in the differential equations, it is found (§ 6) that, in order to satisty
the equations, Bo must be equal to the difference between two finite-continued
fractions, each of which involves Bo.  We thus have an equation for Bo, and the
required root is that which vanishes when 8 vanishes.

For the harmonics of degrees 0, 1, 2, 3, and for all orders, o may be found
rigorously in algebraic form, but for higher degrees the equation can only be solved
approximately, unless 8 should have a definite numerical value.

When B has been determined, either rigorously or approximately, the successive
coeflicients of the series are determinable in such a way that the ratio of each
coefticient to the preceding one is expressed by a continued fraction, which is, in fact,
a portion of one of the two fractions involved in the equation for Bo.

Throughout the rest of the paper the greater part of the work is carried out
with approximate forms, and, although it would be easy to attain to greater
accuracy, 1 have thought it suflicient, in the first instance, to stop at 8%  With this
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limitation the coefficients of the series assume simple forms (§ 8), and we have thus
definite, if approximate, expressions for all the functions which can occur in
ellipsoidal analysis.

Tu rigorous expressions, P; and P; arve essentially different from one another, but
in approximate forms, when s is greater than a certain integer dependent on the
degree of approximation, the two are the same thing in different shapes, except
as to a constant factor. I have, therefore, in § 9 determined up to squaves of B the
factors whereby P; is convertible into 7, and G; or 8§/ into €7 or &.  With the
degree of approximation adopted there is no factor for converting the P’s when
s=3,2, 1. Similarly, down to s = 3 inclusive, the same factor serves for converting
C; into @; and S; into ;. But for s =2, 1, 0 one form is needed for changing
C into @, and another for changing 8 into & It may be well to note that there
18 1o sine-function when s is zero.

The use of these factors does much to facilitate the laborious rveductions involved
in the whole mvestigation.

Tt is well known that the Q-functions are expressible in terms of the P-functions
by means of a definite integral. Hence ®; and Q; must have a second form, which
can only differ from the other by a constant factor. The factors connecting the two
forms are determined in § 10.

The second part of the paper is devoted to applications of the harmonic method.
In § 11 the perpendicular from the centre on to the tangent plane to an ellipsoid v,
and the area of an element of surface of the ellipsoid, are found in terms of the
co-ordinates p, ¢, and the constant »,.

It is easy to form a function, continuous at the surface v, which shall be a solid
harmonic both for external and for internal space. PoissoN’s equation then enables
us to determine the surface density of which this continuous function is the potential,
and it is found to be a surface harmonic of p, ¢ multiplied by the perpendicular on to
the tangent plane. This application of Porsson’s equation involves the use of the
Q-function in its integral form. Accordingly, if the serial form for the Q-function is
adopted as a standard, the expression for the potential of a layer of surface density
involves the use of the factor for conversion between the two forms of Q-function.

This result may obviously be employed to determine the potential of an harmonic
deformation of a solid ellipsoid.

The potential of the solid ellipsoid itself may be found by the consideration that it
is externally equal to that of a focaloid shell of the same mass. It appears that in
order to express the equivalent surface density in swface harmonics, it is only
necessary to express the reciprocal of the square of the perpendicular on the tangent
plane in that form.  This vesult is attained by expressing «° ¥? 2% in surface
harmonics. When this done, an application of the preceding theorem enables us to
write down the external potential of the solid ellipsoid at once. * In § 12 the external
potential of the solid ellipsoid is expressed rigorously in terms of solid harmonics of
degrees zero and 2.
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Since #°, 9%, 2 have been found in surface harmonics, we can also write down a
rotation-potential about any one of the three axes in the same form.

The internal potential of a solid ellipsoid does not lend itself well to elliptic
co-ordinates, but expressions for it are given in § 12.

If it be desired to express any arbitrary function of u, ¢ in surface harmonies, it is
necessary to know the integrals, over the surface of the ellipsoid, of the squares of
the several surface harmonics, each multiplied by the perpendicular on to the tangent
plane. The rest of the paper is devoted to the evaluation of these integrals. No
attempt is made to carry the developments beyond % although the methods
employed would render it possible to do so. ‘

When s is greater than unity, it appears that it is legitimate to develop the

function to be integrated in powers of 1= ) and when this is done, the integration,

although laborious, does not present any great difficulty.

But when s is either 1 or 0, the method of development breaks down, because it
would give rise to infinite elements in the integrals at the poles where w? is unity.
However, portions of the integrals in these cases can still be found by the former
method of development. As to the residues which cannot be so treated, it appears
that they depend on integrals of the forms

rﬁ cos™ 6.7 5 and fﬁ cos™ 0 (1—«?sin* 0)* db,

(st )

1
—ir

where «'* is nearly equal to unity.

Development of the square-roots in powers of &' is useless on account of the slow
convergence, and it is required to find series which proceed by powers of «? where
kK?P=1— k"

By a somewhat difficult investigation, in respect to which I owe my special thanks
to Mr. Hossox, the needed series are found (§ 19).

It appears that portions of the two integrals involve logarithms which become
infinite when « vanishes. Since, in the application of these integrals, the vanishing
of k implies the vanishing of B, we appear to be met by a difficulty. It is known
that in spheroidal analysis no such terms appear, and we may feel confident that
they cannot really exist in ellipsoidal analysis. In §20 it is proved that the
logarithmic terms do as a fact disappear. The residues of the integrals in the cases
s = 1, 0 are thus found, and added to the previous portions to form the complete
results.

The second part of the paper ends (§ 22) with a list of the integrals of the squares
of the surface harmonics for all values of s, as far as the squares of B.

Finally, an appendix below contains a table of all the functions as far as ¢ =5,
s=5. It is probable that for the higher values of s the results would only be
applicable when B is very small.

VOL. CXCVIL-—A. 4B


http://rsta.royalsocietypublishing.org/

/\
y= \

AL Q A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

=
L2

A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

254 PROFESSOR G. H. DARWIN ON ELLIPSOIDAL HARMONIC ANALYSIS.

APPENDIX.

Table of the P- and Q-Functions.
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( — D) it ‘ L [t = LEB\:
Note that in this table P; denotes *— (*) (#* — 1), and Q is <.- 1“‘*)
2‘ ! dy 21 /-

If' the variable is u, and if accordmgly the factor (»* — 1)* in P; is replaced by

(1 — p?)¥, the signs of all the terms which have 8 as coefficient must be changed.

1+ 0\
Q has still the same meaning, but must be written in the form (11—5'? : ) .
N
Ple
:é h Table of the Cosine and Sine Functions.
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1=5 (OEC) C,=®[1—78cos 243/ cos 4¢ |

(999 [Gi={er omtm1308) S a0+ 11 55 0
(ohs) 1§1=0 oo+ (S zv—18{5r 10
(008) {E=1e0xm {5 ot {(mae— ap{ e
(Ons) {Si=oltis o824 {3 4]
0] [G=ae | arap] st {Snon

Note that in this table
=(1—L cos 2¢).

A table of P (v) and Q (v) up to ¢ =5, s=15 is contained in Professor BRyan’s
paper (‘Proc. Camb. Phil. Soc., vol. vi., 1888, p. 297). The functions there
tabulated as T (v) and U, (v) in the nota‘mon here adopted, would be P; (v) (with the

factor (»* — 1)¥) and (— e Qn ().

The formula for Q; (»), whme s is greater than 1, is given in § 10 above.
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